
This article about complex numbers is a little advanced. Take a look behind yesterday's door for a basic introduction to complex numbers.
Many things in mathematics are named after Leonhard Euler, who probably was the most prolific mathematician of all time. In this article we explore a formula carrying his name which reveals a beautiful relationship between the exponential function and trigonometric functions. It also allows us to write complex numbers in an exponential way.
First of all, remember that a complex number has the form
You can associate a complex number

A complex number represented as a point on the plane in Cartesian coordinates.
Now a point

A complex number represented as a point on the plane in polar coordinates.
The relationship between the Cartesian coordinates

Trigonometry tells us the relationship between polar and Cartesian coordinates.
Going back to our complex number
Here comes the really interesting bit. We can also prove, using power series, that
So, in summary, Euler's formula is that a complex number
Euler's formula is beautiful in its own right, but it's also useful. It makes multiplying two complex numbers much easier. And of course it also leads to what's often described as the most beautiful equation in mathematics: Euler's identity:
We can see that the equation is true because
People love this equation because it combines three of the most important numbers in maths —
You can read more about Euler's formula in our longer article. Or you can return to the Plus advent calendar 2021.
This article is part of our collaboration with the Isaac Newton Institute for Mathematical Sciences (INI), an international research centre and our neighbour here on the University of Cambridge's maths campus. INI attracts leading mathematical scientists from all over the world, and is open to all. Visit www.newton.ac.uk to find out more.
