Skip to main content
Home
plus.maths.org

Secondary menu

  • My list
  • About Plus
  • Sponsors
  • Subscribe
  • Contact Us
  • Log in
  • Main navigation

  • Home
  • Articles
  • Collections
  • Podcasts
  • Maths in a minute
  • Puzzles
  • Videos
  • Topics and tags
  • For

    • cat icon
      Curiosity
    • newspaper icon
      Media
    • graduation icon
      Education
    • briefcase icon
      Policy

      Popular topics and tags

      Shapes

      • Geometry
      • Vectors and matrices
      • Topology
      • Networks and graph theory
      • Fractals

      Numbers

      • Number theory
      • Arithmetic
      • Prime numbers
      • Fermat's last theorem
      • Cryptography

      Computing and information

      • Quantum computing
      • Complexity
      • Information theory
      • Artificial intelligence and machine learning
      • Algorithm

      Data and probability

      • Statistics
      • Probability and uncertainty
      • Randomness

      Abstract structures

      • Symmetry
      • Algebra and group theory
      • Vectors and matrices

      Physics

      • Fluid dynamics
      • Quantum physics
      • General relativity, gravity and black holes
      • Entropy and thermodynamics
      • String theory and quantum gravity

      Arts, humanities and sport

      • History and philosophy of mathematics
      • Art and Music
      • Language
      • Sport

      Logic, proof and strategy

      • Logic
      • Proof
      • Game theory

      Calculus and analysis

      • Differential equations
      • Calculus

      Towards applications

      • Mathematical modelling
      • Dynamical systems and Chaos

      Applications

      • Medicine and health
      • Epidemiology
      • Biology
      • Economics and finance
      • Engineering and architecture
      • Weather forecasting
      • Climate change

      Understanding of mathematics

      • Public understanding of mathematics
      • Education

      Get your maths quickly

      • Maths in a minute

      Main menu

    • Home
    • Articles
    • Collections
    • Podcasts
    • Maths in a minute
    • Puzzles
    • Videos
    • Topics and tags
    • Audiences

      • cat icon
        Curiosity
      • newspaper icon
        Media
      • graduation icon
        Education
      • briefcase icon
        Policy

      Secondary menu

    • My list
    • About Plus
    • Sponsors
    • Subscribe
    • Contact Us
    • Log in
    • Plus Advent Calendar Door #4: Four is fine

      4 December, 2013

      Remember maps? In the old days, before smart phones and satnavs, we used to use them to get around. They posed quite a few problems, including folding them and understanding them. To help with the latter, map makers often use different colours to colour adjacent regions, be they countries, counties, or parts of a city. And pretty much since the beginning of map making, they have known that they will never need more than four colours to colour a whole map. It's something that's so blindingly obvious once you start playing with a few maps, it should be easy to prove mathematically: when colouring a map drawn on a flat piece of paper, four colours will always suffice.

      Map

      The US in four colours. Image: Wikipedia.

      Mathematicians first set themselves the task back in 1852, and it proved a massive headache. It took 24 years for the first proof to be announced, only to be found faulty another eleven years later. Then it took another 86 years, until 1976, until the mathematicians Kenneth Appel and Wolfgang Haken came up with a second proof. They first supposed that there are maps that need five colours, from which you can then choose one that has the smallest number of countries. They then showed that such a minimal map must contain one of 1,936 possible configurations; and they also proved that every one of these possible configurations can be reduced into a smaller configuration which also needs five colours. This is a contradiction because they assumed that they had already started with the smallest five-colour map. When you find a contradiction you can deduce that your initial assumption, that there are maps that need five colours, is false.

      This sounds good, but there was a hitch. The part of their proof which showed that these 1,936 configurations could be reduced was done by a computer, which simply ploughed through every configuration and checked it. No human being could in their lifetime ever actually read the entire proof to check that it was correct. This caused an outcry: if nobody can check it, how can we ever know it doesn't contain a mistake? Can mathematics ever be done by computers?

      The proof has since been improved and verified independently (by computers), so most people are quite happy to consider the result proven. The question of whether computer proofs can ever be considered sound, however, is still a hot one.

      To find out more, read The philosophy of proof and Welcome to the maths lab.

      Return to the Plus Advent Calendar

      Read more about...
      Advent calendar 2013
      • Log in or register to post comments

      Read more about...

      Advent calendar 2013
      University of Cambridge logo

      Plus Magazine is part of the family of activities in the Millennium Mathematics Project.
      Copyright © 1997 - 2025. University of Cambridge. All rights reserved.

      Terms