differential topology

The Abel Prize 2011 goes to John Willard Milnor of Stony Brook University, New York for "pioneering discoveries in topology, geometry and algebra".

The world we live in is strictly 3-dimensional: up/down, left/right, and forwards/backwards, these are the only ways to move. For years, scientists and science fiction writers have contemplated the possibilities of higher dimensional spaces. What would a 4- or 5-dimensional universe look like? Or might it even be true that we already inhabit such a space, that our 3-dimensional home is no more than a slice through a higher dimensional realm, just as a slice through a 3-dimensional cube produces a 2-dimensional square?

  • Want facts and want them fast? Our Maths in a minute series explores key mathematical concepts in just a few words.

  • What do chocolate and mayonnaise have in common? It's maths! Find out how in this podcast featuring engineer Valerie Pinfield.

  • Is it possible to write unique music with the limited quantity of notes and chords available? We ask musician Oli Freke!

  • How can maths help to understand the Southern Ocean, a vital component of the Earth's climate system?

  • Was the mathematical modelling projecting the course of the pandemic too pessimistic, or were the projections justified? Matt Keeling tells our colleagues from SBIDER about the COVID models that fed into public policy.

  • PhD student Daniel Kreuter tells us about his work on the BloodCounts! project, which uses maths to make optimal use of the billions of blood tests performed every year around the globe.