higgs boson
In 2004 three physicists decided to dabble in a field they knew little about. Within weeks they had developed a new technique that transforms weeks' worth of computer calculations into something that could be done on a single page in an hour. It's used in particle accelerators such as the LHC at CERN.
The 2013 Nobel prize in physics goes to Peter Higgs and François Englert for proposing the mechanism that gives things mass.
In the first part of this article we explored Landau's theory of phase transitions in materials such as magnets. We now go on to see how this theory formed the basis of the Higgs mechanism, which postulates the existence of the mysterious Higgs boson and explains how the particles that make up our Universe came to have mass.
"It's a great day for particle physics," says Ben Allanach, a theoretical physicist at the University of Cambridge. "It's very exciting, I think we're on the verge of the Higgs discovery." And indeed, it seems like the Large Hadron Collider at CERN has given particle physics an early Christmas present — compelling evidence that the famous Higgs boson exists.
Are we close to finding the Higgs? Ben Allanach explains it is not about catching a glimpse of the beast itself, but instead keeping a careful count of the evidence it leaves behind.
It's been nearly 18 months since the Large Hadron Collider at CERN started up and scientists are eagerly awaiting their first glimpse into the cosmic mysteries it was designed to explore. But when can we realistically expect the first ground-breaking discoveries to come through? Last week, John Ellis, outgoing leader of the theory division at CERN, addressed an audience of physicists at the University of Cambridge to update them on the current state of play. Plus went along and also managed to catch Ellis for a quick interview.