Skip to main content
Home
plus.maths.org

Secondary menu

  • My list
  • About Plus
  • Sponsors
  • Subscribe
  • Contact Us
  • Log in
  • Main navigation

  • Home
  • Articles
  • Collections
  • Podcasts
  • Maths in a minute
  • Puzzles
  • Videos
  • Topics and tags
  • For

    • cat icon
      Curiosity
    • newspaper icon
      Media
    • graduation icon
      Education
    • briefcase icon
      Policy

    Popular topics and tags

    Shapes

    • Geometry
    • Vectors and matrices
    • Topology
    • Networks and graph theory
    • Fractals

    Numbers

    • Number theory
    • Arithmetic
    • Prime numbers
    • Fermat's last theorem
    • Cryptography

    Computing and information

    • Quantum computing
    • Complexity
    • Information theory
    • Artificial intelligence and machine learning
    • Algorithm

    Data and probability

    • Statistics
    • Probability and uncertainty
    • Randomness

    Abstract structures

    • Symmetry
    • Algebra and group theory
    • Vectors and matrices

    Physics

    • Fluid dynamics
    • Quantum physics
    • General relativity, gravity and black holes
    • Entropy and thermodynamics
    • String theory and quantum gravity

    Arts, humanities and sport

    • History and philosophy of mathematics
    • Art and Music
    • Language
    • Sport

    Logic, proof and strategy

    • Logic
    • Proof
    • Game theory

    Calculus and analysis

    • Differential equations
    • Calculus

    Towards applications

    • Mathematical modelling
    • Dynamical systems and Chaos

    Applications

    • Medicine and health
    • Epidemiology
    • Biology
    • Economics and finance
    • Engineering and architecture
    • Weather forecasting
    • Climate change

    Understanding of mathematics

    • Public understanding of mathematics
    • Education

    Get your maths quickly

    • Maths in a minute

    Main menu

  • Home
  • Articles
  • Collections
  • Podcasts
  • Maths in a minute
  • Puzzles
  • Videos
  • Topics and tags
  • Audiences

    • cat icon
      Curiosity
    • newspaper icon
      Media
    • graduation icon
      Education
    • briefcase icon
      Policy

    Secondary menu

  • My list
  • About Plus
  • Sponsors
  • Subscribe
  • Contact Us
  • Log in
  • Breaking up can be sweet solution

    1 May, 2004
    May 2004

    Breaking up can be sweet...

    chocolate

    I can't wait for Easter to get here, so I have bought myself a block of chocolate to tide me over. It is a normal rectangular-shaped block with 5 rows, and 4 pieces of chocolate to a row, making 20 pieces of chocolate ready for the eating. I want to eat all of it right now, but I want to savour each piece.

    What is the least number of clean snaps necessary to break the block of chocolate into the 20 individual pieces?

    What about for a block with n rows of m pieces?


    The solution

    The solution to this puzzle is really pretty simple - but, as usual with maths, only if you think about it the right way!

    Each snap creates exactly one extra piece, therefore to break a bar with K squares of chocolate into all its constituent pieces will require K-1 snaps. So if the block has n rows of m pieces, it will take nm-1 breaks.

    And that's all there is to it!


    Back to main puzzle page
    • Log in or register to post comments

    Anonymous

    23 February 2015

    Permalink
    Comment

    Why is it not 17? If you half each time. Ie. first cut creates 2x4 and 3x4. second and third creates 2 blocks of 2x2 and 2 blocks of 2x3. The first 2 2x2 require 3cuts each the second 2x3 require 4 cuts each. 3+3+3+4+4=17

    • Log in or register to post comments

    Anonymous

    8 July 2016

    In reply to 4x5 chocolate by Anonymous

    Permalink
    Comment

    Doesn't each 2x3 require 5 cuts?

    • Log in or register to post comments
    University of Cambridge logo

    Plus is part of the family of activities in the Millennium Mathematics Project.
    Copyright © 1997 - 2025. University of Cambridge. All rights reserved.

    Terms