Skip to main content
Home
plus.maths.org

Secondary menu

  • My list
  • About Plus
  • Sponsors
  • Subscribe
  • Contact Us
  • Log in
  • Main navigation

  • Home
  • Articles
  • Collections
  • Podcasts
  • Maths in a minute
  • Puzzles
  • Videos
  • Topics and tags
  • For

    • cat icon
      Curiosity
    • newspaper icon
      Media
    • graduation icon
      Education
    • briefcase icon
      Policy

    Popular topics and tags

    Shapes

    • Geometry
    • Vectors and matrices
    • Topology
    • Networks and graph theory
    • Fractals

    Numbers

    • Number theory
    • Arithmetic
    • Prime numbers
    • Fermat's last theorem
    • Cryptography

    Computing and information

    • Quantum computing
    • Complexity
    • Information theory
    • Artificial intelligence and machine learning
    • Algorithm

    Data and probability

    • Statistics
    • Probability and uncertainty
    • Randomness

    Abstract structures

    • Symmetry
    • Algebra and group theory
    • Vectors and matrices

    Physics

    • Fluid dynamics
    • Quantum physics
    • General relativity, gravity and black holes
    • Entropy and thermodynamics
    • String theory and quantum gravity

    Arts, humanities and sport

    • History and philosophy of mathematics
    • Art and Music
    • Language
    • Sport

    Logic, proof and strategy

    • Logic
    • Proof
    • Game theory

    Calculus and analysis

    • Differential equations
    • Calculus

    Towards applications

    • Mathematical modelling
    • Dynamical systems and Chaos

    Applications

    • Medicine and health
    • Epidemiology
    • Biology
    • Economics and finance
    • Engineering and architecture
    • Weather forecasting
    • Climate change

    Understanding of mathematics

    • Public understanding of mathematics
    • Education

    Get your maths quickly

    • Maths in a minute

    Main menu

  • Home
  • Articles
  • Collections
  • Podcasts
  • Maths in a minute
  • Puzzles
  • Videos
  • Topics and tags
  • Audiences

    • cat icon
      Curiosity
    • newspaper icon
      Media
    • graduation icon
      Education
    • briefcase icon
      Policy

    Secondary menu

  • My list
  • About Plus
  • Sponsors
  • Subscribe
  • Contact Us
  • Log in
  • A Reader's Solution

    1 January, 1999
    January 1999
    Here is Tom Holden's solution to puzzle number 6.

    When you get your first coin, you are guaranteed to get a coin you have not yet got.

    When you get you second coin, there is 1/22 chance of it being one you already have, so there is a 21/22 chance of getting one you do not yet have.

    When you have two different coins, there is a 2/22=1/11 chance of getting one you already have, so there is a 20/22=10/11 chance of getting a new one.

    When you have n-1 different coins (or when if you get a new coin it will be your n'th coin), there is a (n-1)/22 chance of getting one you already have, so the re is a 1-(n-1)/22 chance of getting a new one.

    Now the average total number of coins you need to get before you get the full set is the sum (for i=1 to 22) of the average number of coins you have to get before you get your i'th different coin. So to work out the solution of the problem, we must work out how the average number of coins needed to get the i'th different coin is affected by the number i.

    This can be done easily since we know the probability of getting a coin we do not already have is 1-(i-1)/22 and so the expected number of coins we need to take before we get a new coin is 1/(1-(i-1)/2 2)=22/(23-i) and so the total number of coins is the sum (for i=1 to 22) of 22/(23-i)=22 times the sum (for i=1 to 22) of 1/i since changing the order of a sum makes no difference to its result (a+b=b+a).

    Now the answer to the problem is given by:

    22*(1+1/2+1/3+...+1/22)=81 to the nearest whole number of coins.

    So on average, you would have to get 81 coins before you had a whole set of 22.

    • Log in or register to post comments
    University of Cambridge logo

    Plus is part of the family of activities in the Millennium Mathematics Project.
    Copyright © 1997 - 2025. University of Cambridge. All rights reserved.

    Terms