Skip to main content
Home
plus.maths.org

Secondary menu

  • My list
  • About Plus
  • Sponsors
  • Subscribe
  • Contact Us
  • Log in
  • Main navigation

  • Home
  • Articles
  • Collections
  • Podcasts
  • Maths in a minute
  • Puzzles
  • Videos
  • Topics and tags
  • For

    • cat icon
      Curiosity
    • newspaper icon
      Media
    • graduation icon
      Education
    • briefcase icon
      Policy

      Popular topics and tags

      Shapes

      • Geometry
      • Vectors and matrices
      • Topology
      • Networks and graph theory
      • Fractals

      Numbers

      • Number theory
      • Arithmetic
      • Prime numbers
      • Fermat's last theorem
      • Cryptography

      Computing and information

      • Quantum computing
      • Complexity
      • Information theory
      • Artificial intelligence and machine learning
      • Algorithm

      Data and probability

      • Statistics
      • Probability and uncertainty
      • Randomness

      Abstract structures

      • Symmetry
      • Algebra and group theory
      • Vectors and matrices

      Physics

      • Fluid dynamics
      • Quantum physics
      • General relativity, gravity and black holes
      • Entropy and thermodynamics
      • String theory and quantum gravity

      Arts, humanities and sport

      • History and philosophy of mathematics
      • Art and Music
      • Language
      • Sport

      Logic, proof and strategy

      • Logic
      • Proof
      • Game theory

      Calculus and analysis

      • Differential equations
      • Calculus

      Towards applications

      • Mathematical modelling
      • Dynamical systems and Chaos

      Applications

      • Medicine and health
      • Epidemiology
      • Biology
      • Economics and finance
      • Engineering and architecture
      • Weather forecasting
      • Climate change

      Understanding of mathematics

      • Public understanding of mathematics
      • Education

      Get your maths quickly

      • Maths in a minute

      Main menu

    • Home
    • Articles
    • Collections
    • Podcasts
    • Maths in a minute
    • Puzzles
    • Videos
    • Topics and tags
    • Audiences

      • cat icon
        Curiosity
      • newspaper icon
        Media
      • graduation icon
        Education
      • briefcase icon
        Policy

      Secondary menu

    • My list
    • About Plus
    • Sponsors
    • Subscribe
    • Contact Us
    • Log in
    • Abel Prize 2010 goes to John T. Tate

      24 March, 2010
      24/03/2010

      John T. Tate

      John T. Tate. Photo: Charlie Fondville/Abel Prize/The Norwegian Academy of Science and Letters.

      The Abel Prize 2010 has been awarded to John T. Tate from the University of Texas at Austin "for his vast and lasting impact on the theory of numbers". The honour puts Tate on a par with a Nobel Prize winner. In fact, the Abel Prize was established to make up for the fact that there is no Nobel Prize in mathematics.

      Number theory lies right at the heart of maths, its history stretching back all the way to ancient Greece. It's concerned with the whole numbers, the patterns you can find within them and the interactions between them. To many mathematicians the study of these numbers captures the very essence of maths and reveals all of its beauty. As Carl Friedrich Gauss put it, "mathematics is the queen of the sciences and number theory is the queen of mathematics." But while most number theorists have been drawn to the field for its own sake, important applications have emerged over the last few decades. It is number theory that provides the essential tools for encrypting the information we send over the Internet, from credit card details to private email messages.

      Tate's contributions to number theory are wide-ranging. His career has spanned six decades and a whole zoo of mathematical objects carry his name. Some of the questions he has worked on are almost as old as our ability to count. Take, for example, the prime numbers. Every whole number is a product of a unique set of prime numbers, so the primes are in effect the atoms of number theory. We have known since the time of Euclid that there are infinitely many primes, but finding out just how they are distributed amongst the other numbers has proved much more difficult: if you're given one prime, there is no sure-fire of telling what the next one is. The efforts to reveal the secrets of the prime numbers have led to some extremely sophisticated mathematics, and have posed one of the most important, and the most difficult, question of maths, known as the Riemann hypothesis. Tate's work has been central to developing this part of mathematics, edging us ever closer to a solution.

      Another favourite problem of number theorists is to find whole number solutions to simple-looking equations. An example is the equation x2+y2=z2 (which you might recognise from Pythagoras' theorem). Are there whole numbers x, y and z, which satisfy this equation? In this case, the answer is yes, in fact there are infinitely many triples of numbers that do. For other similar equations though, the answer is far from straight-forward. Fermat's last theorem, which involves equations xn+yn=zn for a whole number n>2, is a case in point, as it took almost 400 years and extremely sophisticated maths to prove. Tate's work has provided high-powered mathematical machinery to attack problems of this nature. And while his primary interest lies in the beauty of the mathematics for its own sake, the insight provided by this area of study has important applications in the design of mobile phones, smart cards and even air traffic control systems.

      The mathematician Marcus du Sautoy has written an excellent and accessible explanation of some of Tate's work, which you can find on the Abel Prize website. As Du Sautoy puts it, "Just as the telescope allowed astronomers to see new worlds, Tate's mathematics has provided tools and insights which have allowed the mathematicians of this generation to see further into the universe of numbers than ever before. He truly deserves the title of the Galileo of number theory."


      Further reading

      You can find out more on related mathematics on Plus:

      • The prime number lottery, an article by Marcus du Sautoy
      • The music of the primes, an article by Marcus du Sautoy
      • A disappearing numbers, an article exploring the Riemann hypothesis
      • Fermat's last theorem and Andrew Wiles, an article exploring Fermat's last theorem.
      • Safety in numbers, an article exploring number theory and cryptography.
      Read more about...
      number theory
      Riemann hypothesis
      Abel prize
      • Log in or register to post comments

      Read more about...

      number theory
      Riemann hypothesis
      Abel prize
      University of Cambridge logo

      Plus is part of the family of activities in the Millennium Mathematics Project.
      Copyright © 1997 - 2025. University of Cambridge. All rights reserved.

      Terms

      We use cookies to enhance your experience.
      • About our cookies
      • Cookie details