icon

Podcast 8, April 2008: Codes and codebreaking - the Enigma machine

Share this page

Podcast 8, April 2008: Codes and codebreaking - the Enigma machine


The Enigma machine was once considered unbreakable, and the cracking of the "unbreakable code" by the allies changed the course of World War 2. This week, Plus talks to Nadia Baker from the Enigma Project about the history of codes and code-breaking, why the Enigma machine was considered unbreakable, the mathematics behind codes, and how it was finally cracked. The Enigma Project travels all over the United Kingdom and abroad, visiting over 100 schools and organisations, reaching over 12,000 people of all ages every year.

Permalink

// INDENTATION HAS NOT BEEN PRESERVED BY THIS WEB SITE,,, sorry about that.. .

// Dennis Bednar 2010-08-03.
//
// This code is related to Enigma plugboard of Enigma cryptographic machine used in World War 2.
// There are 26 plugs labelled A-Z, in the plugboard.
// The "plug" for each letter actually has two sockets, and there are two male pins at end of each wire.
//
// A wire can be between any two *different* letters, which causes the pair of letters to be swapped.
// Hence if there is a wire between A and K, then input A converts into output K,
// and input K converts into output A. (IE, A <-> K).
//
// To compile and run this code:
//
// contents of doit.cmd file:
// rem compile and run Main.java
// del Main.class
// \jdk1.5.0_08\bin\javac.exe Main.java
// \jdk1.5.0_08\bin\java.exe Main
//
// Then just run doit.cmd.
// ====================================================

import java.math.BigInteger; // for big integers arbitrarily large

public class Main
{
public static void main( String argv [] )
{

// TEST CODE IS commented out.

// testFactorials();

// testCommas();

work();
}

// Unit Test Code
// compute n! for n=1..10

public static void testFactorials()
{
System.out.println( "=== BEG testFactorials ===" );
for (int i = 1; i < 10; ++i)
{
// convert into into String, so we can use BigInteger(String) constructor
String strNum = new Integer(i).toString();

BigInteger bi = new BigInteger( strNum );
BigInteger result = factorial( bi );
System.out.println( strNum + "!=" + result );
}
System.out.println( "=== END testFactorials ===" );
}

// Unit Test Code
// try putting in comma's with decimal digits strings that are 1..MAX_PLACES length
// starting with "1", "12", "123", "1234", ... "123456789", "1234567890", ...
// we expect to convert "1234" into "1,234", to add commas in that number.

public static void testCommas()
{
final int NUM_PLACES = 25; // a constant, max nr of decicmal positions

System.out.println( "=== BEG testCommas ===" );
// try num=1, "12", "123", ... "123456789", "1234567890", "12345678901"
String num = "";

// used to figure out which digit to grab next
String digits = "0123456789";

// try input number strings with values of "1", "12", "123", "1234",
// and so forth

for (int i = 1; i <= NUM_PLACES; ++i)
{
int pos = i%10;
num += digits.substring( pos, pos+1 );
String result = addCommas (num );
System.out.println( "IN: " + num + " OUT: " + result );
}
System.out.println( "=== END testCommas ===" );

}

// see also:
// http://www.codesandciphers.co.uk/enigma/steckercount.htm
//
// More abstractly: the number of ways of choosing m pairs out of n objects is:
//
// n! /((n-2m)! m! 2m)
//
// If you want to convince yourself of this formula you might like to check that there are:
//
// 3 different ways of putting 2 pairs of wire into 4 plugboard sockets
// 15 different ways of putting 3 pairs of wire into 6 plugboard sockets.
// From this formula we can find out something which often surprises people, which is that the number of possible plugboard pairings is greatest for 11 pairs, and then decreases:
//
// EXPECTED OUTPUT from this function, based on above "see also" HTML link:
//
// 1 pair: 325
// 2 pairs: 44.850
// 3 pairs: 3,453,450
// 4 pairs: 164,038,875
// 5 pairs: 5,019,589,575
// 6 pairs: 100,391,791,500
// 7 pairs: 1,305,093,289,500
// 8 pairs: 10,767.019,638,375
// 9 pairs: 58,835.098,191,875
// 10 pairs: 150,738,274,937,250
// 11 pairs: 205,552,193,096,250
// 12 pairs: 102,776,096,548,125
// 13 pairs: 7,905,853,580,625
//
//

public static void work()
{
System.out.println( "=== Number of combinations of m wires in Enigma plugboard having 26 letters ===" );

BigInteger numWires = BigInteger.ONE;

final BigInteger NUM_PLUGS = new BigInteger("26");

// try 1..13 wires in a plugboard of 26 letters
//
// NB: I once tried 14 instead of 13, and verified that we blew up with
// IllegalArgumentExceptioni when trying to call factorial(-2).

for( int i = 1; i <= 13; ++i)
{
String strPair = null;
BigInteger combinations = numPairs( NUM_PLUGS, numWires );
if (i == 1)
strPair = "pair";
else
strPair = "pairs";

// before we could rely on addComma() method, we print both without *and* with commas
// System.out.println( numWires + " " + strPair + ": " + combinations + " (" + addCommas(combinations.toString() ) + ")" );

// i pair(s): combinations_with_commas

System.out.println( numWires + " " + strPair + ": " + addCommas(combinations.toString() ) );
numWires = numWires.add( BigInteger.ONE );
}
System.out.println( "=== DONE ===" );

}

// return number of pairs of m objects from n total objects
//
// More abstractly: the number of ways of choosing m pairs out of n objects is:

// n! /((n-2m)! m! 2^m)
public static BigInteger numPairs( BigInteger n, BigInteger m )
{
final BigInteger TWO = new BigInteger( "2" );

BigInteger numerator = factorial( n );
BigInteger div1 = factorial( n.subtract( m.multiply( TWO )) ); // (n-2m) !
BigInteger div2 = factorial( m ); // m!

int mi = m.intValue(); // cannot do pow(BigInteger), must do pow(int)
BigInteger div3 = TWO.pow( mi ); // 2^m

BigInteger divisor = div1.multiply(div2.multiply(div3)); // div1*div2*div3

BigInteger result = numerator.divide( divisor );
return result;
}

// return n!, or "n factorial".
// 0! = 1
// 1! = 1
// 2! = 2*1
// 3! = 3*2*1
// 4! = 4*3*2*1
// ...
// n! = n * (n-1) * (n-2) * (n-3) * ... * 3 * 2 * 1
/**
* @return n!
* @throws IllegalArgumentException if n < 0.
*/

public static BigInteger factorial( BigInteger n )
{
// if n < 0 (ie, a netative number, then this is illegal)

if (n.compareTo( BigInteger.ZERO ) < 0)
throw new IllegalArgumentException( "factorial(" + n.toString() + ") attempted: you cannot use negative number" );

if (n.equals(BigInteger.ZERO))
return BigInteger.ONE;
if (n.equals(BigInteger.ONE))
return BigInteger.ONE;
BigInteger prod = BigInteger.ONE;

// prod = n * (n-1) ... * 3 * 2

while (! n.equals(BigInteger.ONE))
{
prod = prod.multiply(n); // prod = prod * n
n = n.subtract( BigInteger.ONE ); // n = n-1
}

return prod;
}

// add comma's to a decimal integer
// "" -> ""
// "1" -> "1"
// "12" -> "12"
// "123" -> "123"
// "1234" -> "1,234"
// "12345" -> "12,345"
// "123456 -> "123,456"

public static String addCommas( String number )
{
if (number.indexOf(".") != -1)
throw new IllegalArgumentException( "illegal decimal point found:" + number );

// TBD: maybe should check that only digits 0-9 are passed in number ??

// 3 or less digits is unchanged
if (number.length() <= 3)
return number;

// find index where first comma belongs

// find len of initial digits ( 4 -> 1, 5 -> 2, 6 -> 3)
int prefixLen = number.length() % 3;
if (prefixLen == 0)
prefixLen = 3;

int begInx = 0;
int endInx = prefixLen;

// put comma AFTER each group (not now)
String result = number.substring( begInx, endInx );
int remLength = number.length() - prefixLen;

// after first comma
begInx += prefixLen;
endInx += 3;

// remLen is now a multiple of 3, and we
// take 3 digits at a time, putting a comma in front of each 3 digits.

for (; remLength > 0; remLength -= 3)
{
// concatenate "," and next 3 digits
result += ( "," + number.substring( begInx, endInx ) );

// move to the next group of 3 digits
begInx += 3;
endInx += 3;
}

return result;
}
}

Permalink

instead of 58,835.098,191,875 for 9 pairs, should stay 53,835.098,191,875