Skip to main content
Home
plus.maths.org

Secondary menu

  • My list
  • About Plus
  • Sponsors
  • Subscribe
  • Contact Us
  • Log in
  • Main navigation

  • Home
  • Articles
  • Collections
  • Podcasts
  • Maths in a minute
  • Puzzles
  • Videos
  • Topics and tags
  • For

    • cat icon
      Curiosity
    • newspaper icon
      Media
    • graduation icon
      Education
    • briefcase icon
      Policy

      Popular topics and tags

      Shapes

      • Geometry
      • Vectors and matrices
      • Topology
      • Networks and graph theory
      • Fractals

      Numbers

      • Number theory
      • Arithmetic
      • Prime numbers
      • Fermat's last theorem
      • Cryptography

      Computing and information

      • Quantum computing
      • Complexity
      • Information theory
      • Artificial intelligence and machine learning
      • Algorithm

      Data and probability

      • Statistics
      • Probability and uncertainty
      • Randomness

      Abstract structures

      • Symmetry
      • Algebra and group theory
      • Vectors and matrices

      Physics

      • Fluid dynamics
      • Quantum physics
      • General relativity, gravity and black holes
      • Entropy and thermodynamics
      • String theory and quantum gravity

      Arts, humanities and sport

      • History and philosophy of mathematics
      • Art and Music
      • Language
      • Sport

      Logic, proof and strategy

      • Logic
      • Proof
      • Game theory

      Calculus and analysis

      • Differential equations
      • Calculus

      Towards applications

      • Mathematical modelling
      • Dynamical systems and Chaos

      Applications

      • Medicine and health
      • Epidemiology
      • Biology
      • Economics and finance
      • Engineering and architecture
      • Weather forecasting
      • Climate change

      Understanding of mathematics

      • Public understanding of mathematics
      • Education

      Get your maths quickly

      • Maths in a minute

      Main menu

    • Home
    • Articles
    • Collections
    • Podcasts
    • Maths in a minute
    • Puzzles
    • Videos
    • Topics and tags
    • Audiences

      • cat icon
        Curiosity
      • newspaper icon
        Media
      • graduation icon
        Education
      • briefcase icon
        Policy

      Secondary menu

    • My list
    • About Plus
    • Sponsors
    • Subscribe
    • Contact Us
    • Log in
    • Maths in a minute: Simpson's paradox

      5 November, 2010

      Suppose you're trying to decide which university to go to. You find out that last year the university you're interested in admitted 30% of male applicants but only 21.3% of female applicants. Looks like a clear case of gender bias, so you're tempted to go somewhere else. But then you look at the figures again, this time broken up by department. The university only has two departments, maths and English. The English department admitted 40% of male applicants and 42% of female applicants. The maths department admitted 10% of male applicants and 11% of female applicants. So if you look at the figures by department, if anything there's bias in favour of women. What's going on?

      This is an example of Simpson's paradox, which arises when you look at percentages without giving the actual numbers involved. Suppose the English department admits quite a high proportion of applicants, while the maths department is more choosy and admits only a small proportion. Now suppose that most of the male applicants apply to the English department. Then this drives up the overall percentage of successful male applicants, as English is easier to get into. Similarly, if most women apply to the maths department, then this lowers the overall percentage of successful women applicants, because maths is harder to get into. So it can happen that, although neither department discriminates against women, the overall percentage of successful female applicants is lower than that for males.

      Let's go back to the example: suppose that 100 men apply to the English department, so that means that 40 of them got in (40%). Suppose that only 50 women applied to the English department, so 21 of them got in (42%). Suppose the maths department had only 50 male applicants, so 5 got in (10%), and 100 female applicants, of which 11 got in (11%). Then the overall proportion of male applicants who were successful is 45/150 corresponding to 30%. For the women the overall proportion is 32/150 corresponding to 21.3%. Mystery solved.

      This paradox isn't just a theoretical curiosity. In 1973 The University of California at Berkeley was sued for sex bias on the basis of figures that were an illustration of Simpson's paradox. It turned out that on the whole women had applied to more competitive departments and that's how the seemingly biased figures arose.

      You can find out more about Simpson's paradox on Plus.

      Read more about...
      Maths in a minute
      Simpson's Paradox
      • Log in or register to post comments

      Anonymous

      10 December 2010

      Permalink

      What I think about "Simpson's paradox":

      http://www.youtube.com/watch?v=KBiSduDfK0o

      • Log in or register to post comments

      math.nights

      7 March 2016

      Permalink

      To Arabic: https://goo.gl/sQHJE0

      • Log in or register to post comments

      Kilr Panda

      6 December 2017

      Permalink

      So pretty much, from what i see, this is just a manipulation of statistics. not really a paradox. It doesn't defy logic if you look at the stuff behind the results

      • Log in or register to post comments

      Elie

      12 June 2018

      In reply to My take, by Kilr Panda

      Permalink

      Paradoxes don't defy logic when you fully understand them.

      Maybe we could call it a fallacy instead. But whatever it's called, people need to understand it, to prevent stupid political decisions :)

      • Log in or register to post comments

      Read more about...

      Maths in a minute
      Simpson's Paradox
      University of Cambridge logo

      Plus is part of the family of activities in the Millennium Mathematics Project.
      Copyright © 1997 - 2025. University of Cambridge. All rights reserved.

      Terms