Skip to main content
Home
plus.maths.org

Secondary menu

  • My list
  • About Plus
  • Sponsors
  • Subscribe
  • Contact Us
  • Log in
  • Main navigation

  • Home
  • Articles
  • Collections
  • Podcasts
  • Maths in a minute
  • Puzzles
  • Videos
  • Topics and tags
  • For

    • cat icon
      Curiosity
    • newspaper icon
      Media
    • graduation icon
      Education
    • briefcase icon
      Policy

    Popular topics and tags

    Shapes

    • Geometry
    • Vectors and matrices
    • Topology
    • Networks and graph theory
    • Fractals

    Numbers

    • Number theory
    • Arithmetic
    • Prime numbers
    • Fermat's last theorem
    • Cryptography

    Computing and information

    • Quantum computing
    • Complexity
    • Information theory
    • Artificial intelligence and machine learning
    • Algorithm

    Data and probability

    • Statistics
    • Probability and uncertainty
    • Randomness

    Abstract structures

    • Symmetry
    • Algebra and group theory
    • Vectors and matrices

    Physics

    • Fluid dynamics
    • Quantum physics
    • General relativity, gravity and black holes
    • Entropy and thermodynamics
    • String theory and quantum gravity

    Arts, humanities and sport

    • History and philosophy of mathematics
    • Art and Music
    • Language
    • Sport

    Logic, proof and strategy

    • Logic
    • Proof
    • Game theory

    Calculus and analysis

    • Differential equations
    • Calculus

    Towards applications

    • Mathematical modelling
    • Dynamical systems and Chaos

    Applications

    • Medicine and health
    • Epidemiology
    • Biology
    • Economics and finance
    • Engineering and architecture
    • Weather forecasting
    • Climate change

    Understanding of mathematics

    • Public understanding of mathematics
    • Education

    Get your maths quickly

    • Maths in a minute

    Main menu

  • Home
  • Articles
  • Collections
  • Podcasts
  • Maths in a minute
  • Puzzles
  • Videos
  • Topics and tags
  • Audiences

    • cat icon
      Curiosity
    • newspaper icon
      Media
    • graduation icon
      Education
    • briefcase icon
      Policy

    Secondary menu

  • My list
  • About Plus
  • Sponsors
  • Subscribe
  • Contact Us
  • Log in
  • Complex electricity

    by
    Chris Budd
    24 November, 2017

    Producing electricity securely, safely, reliably and cheaply, has many challenges. Electricity is difficult to store in large quantities, so it usually has to be used as soon as it is generated. We also have a very low tolerance to any interruption in the electricity supply. Other challenges arise from the extreme interconnectedness of the electricity network, which means that a problem in part of the network quickly becomes a problem for the whole network.

    Most of the time the process of transmitting electricity proceeds smoothly. However, there have been times of such great demand that the UK electricity network has nearly been shut down, such as everyone boiling their kettles at half time during the 1990 World Cup semi final when England played Germany.

    Peak demands on the UK supply. (Data source National Grid)

    The modern electricity supply network relies on the invention of alternating current (AC) by Nikolas Tesla. In AC the current and the voltage vary like a wave over time as seen below. Mathematically, these waves can be described by sine and cosine functions.

    The AC voltage $V_{AC}(t)$ and current $I_{AC}(t)$ have the form $$ V_{AC}(t)=|V| \cos (\omega t + \phi_1), $$ and $$I_{AC}(t)=|I| \cos (\omega t + \phi_2) $$ where $t$ is time, $\omega$ is the frequency of 50 Hz and $\phi_1$ and $\phi_2$ are the phases of the respective waves (the phase describes how far the wave is shifted along the horizontal axis), and $|V|$ and $|I|$ are the amplitudes of the respective waves (their heights).

    Electricity is complex

    To represent an AC voltage, electrical engineers make extensive use of complex numbers. The imaginary number $i$ satisfies the equation $$ i^2=-1 $$

    which was originally thought to have no solution. Imaginary numbers, and their extension, the complex numbers, were introduced by mathematicians in the 18th century to make sense of this equation, and were originally thought to be highly abstract mathematical objects of no possible use. However they lie at the heart of power engineering.

    The reason for this is Euler's famous identity $$ e^{i\theta}=\cos (\theta) + i\sin (\theta) . $$ which allows us an easy way of describing alternating current, along with its frequency and phase. (You can read more about Euler's identity here.)

    Going back to our expression of the alternating $V_{AC}(t)$ above, we see that an alternating voltage is the real part of the function $$V(t) = |V| \cos (\omega t + \phi_1) + i|V| \sin (\omega t + \phi_1)\right) = |V|\left(\cos (\omega t + \phi_1) + i\sin (\omega t + \phi_1)\right).$$ This, according to Euler's identity, is equal to $$ V(t)=|V| e^{i(\omega t+ \phi_1)}. $$ A convenient way to express this is as $$ V(t)=|V| e^{i\phi_1} e^{i\omega t} $$ and we call the expression $V=|V| e^{i\phi_1}$ the complex voltage. This single complex number contains two pieces of information, namely the amplitude, and the phase, of the voltage. There is a similar expression for the complex current. Expressing voltage and current as complex numbers makes the mathematics of power networks a whole lot easier, and is an important part of making sure that the lights always stay on.

    This article is an edited version of Chris Budd's article Energetic maths. You can read the article in full here.

    You can find out more about complex numbers and things you can do with them in this introductory package and in our teacher package.

    • Log in or register to post comments

    Read more about...

    complex number
    applied mathematics

    Our Podcast: Maths on the Move

    Our Maths on the Move podcast brings you the latest news from the world of maths, plus interviews and discussions with leading mathematicians and scientists about the maths that is changing our lives.

    Apple Podcasts
    Spotify
    Podbean

    Plus delivered to you

    Keep up to date with Plus by subscribing to our newsletter or following Plus on X or Bluesky.

    University of Cambridge logo

    Plus is part of the family of activities in the Millennium Mathematics Project.
    Copyright © 1997 - 2025. University of Cambridge. All rights reserved.

    Terms