Skip to main content
Home
plus.maths.org

Secondary menu

  • My list
  • About Plus
  • Sponsors
  • Subscribe
  • Contact Us
  • Log in
  • Main navigation

  • Home
  • Articles
  • Collections
  • Podcasts
  • Maths in a minute
  • Puzzles
  • Videos
  • Topics and tags
  • For

    • cat icon
      Curiosity
    • newspaper icon
      Media
    • graduation icon
      Education
    • briefcase icon
      Policy

      Popular topics and tags

      Shapes

      • Geometry
      • Vectors and matrices
      • Topology
      • Networks and graph theory
      • Fractals

      Numbers

      • Number theory
      • Arithmetic
      • Prime numbers
      • Fermat's last theorem
      • Cryptography

      Computing and information

      • Quantum computing
      • Complexity
      • Information theory
      • Artificial intelligence and machine learning
      • Algorithm

      Data and probability

      • Statistics
      • Probability and uncertainty
      • Randomness

      Abstract structures

      • Symmetry
      • Algebra and group theory
      • Vectors and matrices

      Physics

      • Fluid dynamics
      • Quantum physics
      • General relativity, gravity and black holes
      • Entropy and thermodynamics
      • String theory and quantum gravity

      Arts, humanities and sport

      • History and philosophy of mathematics
      • Art and Music
      • Language
      • Sport

      Logic, proof and strategy

      • Logic
      • Proof
      • Game theory

      Calculus and analysis

      • Differential equations
      • Calculus

      Towards applications

      • Mathematical modelling
      • Dynamical systems and Chaos

      Applications

      • Medicine and health
      • Epidemiology
      • Biology
      • Economics and finance
      • Engineering and architecture
      • Weather forecasting
      • Climate change

      Understanding of mathematics

      • Public understanding of mathematics
      • Education

      Get your maths quickly

      • Maths in a minute

      Main menu

    • Home
    • Articles
    • Collections
    • Podcasts
    • Maths in a minute
    • Puzzles
    • Videos
    • Topics and tags
    • Audiences

      • cat icon
        Curiosity
      • newspaper icon
        Media
      • graduation icon
        Education
      • briefcase icon
        Policy

      Secondary menu

    • My list
    • About Plus
    • Sponsors
    • Subscribe
    • Contact Us
    • Log in
    • Black holes exist!

      12 February, 2016

      Finally we can be sure — black holes, those gravitational monsters that gobble up everything that gets too close to them, do exist. The crucial piece of evidence arrived yesterday, when physicists announced they had detected ripples in spacetime called gravitational waves for the first time. "It's the greatest discovery in experimental gravitational physics of the last hundred years," says Pau Figueras, a theoretical physicist as the University of Cambridge. "It provides a direct detection (and hence confirms) two inevitable consequences of [Einstein's theory of gravity]: gravitational waves and black holes."

      Black hole

      Simulated view of a black hole. Image: Alain Riazuelo.

      According to Einstein's general theory of relativity, spacetime is more than a rigid stage on which the physics of the Universe plays out: it actually gets involved in the action. Massive bodies, such as planets and stars, can warp the very fabric of spacetime, just like a heavy object placed on a mattress warps the mattress. Gravity, which we perceive as a force, is a result of the curvature of space and time. A massive body like the Sun creates a dip in spacetime, thus diverting the path, and apparently attracting, less massive bodies like the Earth. Black holes arise when the curvature of spacetime becomes extreme (for example when a very massive star collapses to occupy a very small region of space). Gravity then becomes so strong that nothing, not even light, can escape from the region. Hence the name "black hole".

      All that's according to theory, but until yesterday direct evidence for the existence of black holes was still missing. Physicists believed they exist, but they couldn't be sure. It's impossible to actually see black holes (after all, they are black) but one way of detecting them is to observe the effect they have on spacetime. Just as a massive object moving around in a pond will create ripples in the water, so a massive object, like a black hole, moving around in spacetime will create ripples too. These gravitationally waves are particularly strong when they come from two black holes that spiral around each other, get closer and closer, and eventually merge. Einstein's theory allows you to calculate exactly what the gravitational waves created by such a black hole merger should look like. And the gravitational waves detected by LIGO exactly match the profile: they look exactly like waves coming from black holes that collided over one billion lightyears away from Earth. The detection therefore counts as further evidence that Einstein's theory is correct, and as the first direct evidence for the existence of black holes.

      Further reading

      To find out more, see Mysterious black holes which includes a video interview with Pau Figueras.

      Read more about...
      gravity
      black hole
      general relativity
      gravitational wave
      • Log in or register to post comments

      Read more about...

      gravity
      black hole
      general relativity
      gravitational wave
      University of Cambridge logo

      Plus is part of the family of activities in the Millennium Mathematics Project.
      Copyright © 1997 - 2025. University of Cambridge. All rights reserved.

      Terms

      We use cookies to enhance your experience.
      • About our cookies
      • Cookie details