Skip to main content
Home
plus.maths.org

Secondary menu

  • My list
  • About Plus
  • Sponsors
  • Subscribe
  • Contact Us
  • Log in
  • Main navigation

  • Home
  • Articles
  • Collections
  • Podcasts
  • Maths in a minute
  • Puzzles
  • Videos
  • Topics and tags
  • For

    • cat icon
      Curiosity
    • newspaper icon
      Media
    • graduation icon
      Education
    • briefcase icon
      Policy

    Popular topics and tags

    Shapes

    • Geometry
    • Vectors and matrices
    • Topology
    • Networks and graph theory
    • Fractals

    Numbers

    • Number theory
    • Arithmetic
    • Prime numbers
    • Fermat's last theorem
    • Cryptography

    Computing and information

    • Quantum computing
    • Complexity
    • Information theory
    • Artificial intelligence and machine learning
    • Algorithm

    Data and probability

    • Statistics
    • Probability and uncertainty
    • Randomness

    Abstract structures

    • Symmetry
    • Algebra and group theory
    • Vectors and matrices

    Physics

    • Fluid dynamics
    • Quantum physics
    • General relativity, gravity and black holes
    • Entropy and thermodynamics
    • String theory and quantum gravity

    Arts, humanities and sport

    • History and philosophy of mathematics
    • Art and Music
    • Language
    • Sport

    Logic, proof and strategy

    • Logic
    • Proof
    • Game theory

    Calculus and analysis

    • Differential equations
    • Calculus

    Towards applications

    • Mathematical modelling
    • Dynamical systems and Chaos

    Applications

    • Medicine and health
    • Epidemiology
    • Biology
    • Economics and finance
    • Engineering and architecture
    • Weather forecasting
    • Climate change

    Understanding of mathematics

    • Public understanding of mathematics
    • Education

    Get your maths quickly

    • Maths in a minute

    Main menu

  • Home
  • Articles
  • Collections
  • Podcasts
  • Maths in a minute
  • Puzzles
  • Videos
  • Topics and tags
  • Audiences

    • cat icon
      Curiosity
    • newspaper icon
      Media
    • graduation icon
      Education
    • briefcase icon
      Policy

    Secondary menu

  • My list
  • About Plus
  • Sponsors
  • Subscribe
  • Contact Us
  • Log in
  • Introducing Florence Nightingale

    13 May, 2017
    Florence Nightingale

    A young Florence Nightingale

    Florence Nightingale is most famous for her role as a nurse. During the Crimean war, which raged in Turkey between 1853 and 1856, she worked at the military hospitals where British troops were treated. She became known as the "lady with the lamp", who made her rounds at night to look after injured soldiers. After the war, Florence Nightingale pushed through a reform of military hospitals, which until then had been dirty and disorganised. It was a major achievement: women in Victorian Britain were not expected to do this sort of work, and Nightingale had to fight hard to be taken seriously by the authorities.

    Although Florence Nightingale is famous as a nurse, the main tool she used in her campaign to reform hospitals was statistics. Nightingale had been shocked by the conditions she'd found in the military hospitals in Turkey: there were no blankets, beds, furniture, food, or cooking utensils, and there were rats and fleas everywhere. Nightingale was unhappy about the appalling lack of cleanliness and hygiene, but also about the fact that no one had properly organised the medical records. Even the number of deaths was not accurate; hundreds of men had been buried, but their deaths were not recorded.

    Read a longer version of this article by Eileen Magnello!

    Nightingale carefully recorded statistics such as numbers and causes of deaths, and found that the unsanitary conditions, which could lead to diseases such as cholera and typhoid, killed more soldiers than actual war-wounds. Her conclusion was shocking: "our soldiers are enlisted to die in barracks", she wrote.

    After the war Nightingale set about persuading people that a hospital reform was necessary, using her statistics and the help of the statistician William Farr. It can be hard to get people to look at and understand long lists of numbers — and this is where one of Nightingale's brightest ideas came in. Like other statisticians at the time, Nightingale realised that the best way to get across statistical information is to use pictures. She invented what are called polar area graphs — you can see an example below.

    Florence Nightingale

    Example of a polar area diagram.

    Such a diagram is cut into twelve equal angles, with each slice representing one month of the year. Each colour represents a cause of death and the area of each coloured wedge, measured from the centre, is in proportion to the number of soldiers that died from that cause — so the larger the wedge, the more soldiers died. The blue outer wedges represent the deaths from contagious diseases, such as cholera and typhus. The central red wedges show the deaths from wounds. The black wedges in between represent deaths from all other causes.

    Since the blue wedges are so much larger than the others, one glance at the diagram shows that diseases were the greatest killers. If this rate had continued, and troops had not been replaced frequently, then disease alone would have killed the entire British Army in the Crimea. Nightingale's graph showed just how many soldiers died needlessly during the Crimean War, and was used as a tool to persuade the government and medical profession that deaths could be prevented with better sanitation in military, and also in civilian, hospitals.

    Nightingale's knack with statistics not only brought about hospital reforms, but also led to other mathematicians honouring her for her contribution to the subject. In 1858 William Farr nominated her as the first woman to be elected a Fellow of the Statistical Society of London. In the same year she was elected to the Statistical Congress, and she was made an honorary foreign member of the American Statistical Association in 1874. She published a total of 200 books, reports and pamphlets during her lifetime.

    And her legacy continues today. Open any newspaper and you will find lots of graphs, pie charts, histograms or other visual methods used to bring across statistical information. Today the medical profession relies on statistics more than ever: without careful records and analyses of experiments it's impossible to tell what makes people sick and how to cure them.


    About this article

    This article is based on The compassionate statistician by Eileen Magnello.

    • Log in or register to post comments

    Read more about...

    Nightingale
    statistics
    history of mathematics

    Our Podcast: Maths on the Move

    Our Maths on the Move podcast brings you the latest news from the world of maths, plus interviews and discussions with leading mathematicians and scientists about the maths that is changing our lives.

    Apple Podcasts
    Spotify
    Podbean

    Plus delivered to you

    Keep up to date with Plus by subscribing to our newsletter or following Plus on X or Bluesky.

    University of Cambridge logo

    Plus is part of the family of activities in the Millennium Mathematics Project.
    Copyright © 1997 - 2025. University of Cambridge. All rights reserved.

    Terms