Skip to main content
Home
plus.maths.org

Secondary menu

  • My list
  • About Plus
  • Sponsors
  • Subscribe
  • Contact Us
  • Log in
  • Main navigation

  • Home
  • Articles
  • Collections
  • Podcasts
  • Maths in a minute
  • Puzzles
  • Videos
  • Topics and tags
  • For

    • cat icon
      Curiosity
    • newspaper icon
      Media
    • graduation icon
      Education
    • briefcase icon
      Policy

    Popular topics and tags

    Shapes

    • Geometry
    • Vectors and matrices
    • Topology
    • Networks and graph theory
    • Fractals

    Numbers

    • Number theory
    • Arithmetic
    • Prime numbers
    • Fermat's last theorem
    • Cryptography

    Computing and information

    • Quantum computing
    • Complexity
    • Information theory
    • Artificial intelligence and machine learning
    • Algorithm

    Data and probability

    • Statistics
    • Probability and uncertainty
    • Randomness

    Abstract structures

    • Symmetry
    • Algebra and group theory
    • Vectors and matrices

    Physics

    • Fluid dynamics
    • Quantum physics
    • General relativity, gravity and black holes
    • Entropy and thermodynamics
    • String theory and quantum gravity

    Arts, humanities and sport

    • History and philosophy of mathematics
    • Art and Music
    • Language
    • Sport

    Logic, proof and strategy

    • Logic
    • Proof
    • Game theory

    Calculus and analysis

    • Differential equations
    • Calculus

    Towards applications

    • Mathematical modelling
    • Dynamical systems and Chaos

    Applications

    • Medicine and health
    • Epidemiology
    • Biology
    • Economics and finance
    • Engineering and architecture
    • Weather forecasting
    • Climate change

    Understanding of mathematics

    • Public understanding of mathematics
    • Education

    Get your maths quickly

    • Maths in a minute

    Main menu

  • Home
  • Articles
  • Collections
  • Podcasts
  • Maths in a minute
  • Puzzles
  • Videos
  • Topics and tags
  • Audiences

    • cat icon
      Curiosity
    • newspaper icon
      Media
    • graduation icon
      Education
    • briefcase icon
      Policy

    Secondary menu

  • My list
  • About Plus
  • Sponsors
  • Subscribe
  • Contact Us
  • Log in
  • Maths in a minute: Some basic linear programming

    26 April, 2017
    Pineapple

    How many of these should you plant?

    Imagine you have an allotment and you want to make some money by planting and selling two crops, cocoa and pineapples (you're lucky to live in a warm country). You obviously want to maximise your return, but you're constrained by how much money you can spend up front and by the size of your plot. How much of each crop should you plant?

    This sounds like one of those headachey word problems we all know from school, but it turns out that it has a neat graphical solution. Let's write $x$ for the amount of cocoa you'll plant and $y$ for the amount of pineapples. Suppose that when you harvest the crops you'll get a unit return of $\pounds 3$ on the cocoa, and of $\pounds 2$ on the pineapples. Your total return $P$ will therefore be \begin{equation}P=3x+2y.\end{equation} That's the amount you'd like to maximise. However, planting also comes with a cost. The unit cost of cocoa seed is $\pounds 2$, and of pineapple seed is $\pounds 1$, and there's an upfront cost $\pounds 4$ just to use the field in the first place. The total cost $C$ of growing the two crops is given by \begin{equation}C=2x+y+4.\end{equation} You only have $\pounds 50$ in the bank, so you need the total cost to be less than that: \begin{equation}C=2x+y+4 \leq 50.\end{equation} The size of the field also provides a constraint. If the amount of space taken up by a unit cocoa is $1m^2$ and by a unit pineapple is $1m^2$ then the total amount of space $S$ taken up in the field by our two crops is given by \begin{equation}S = x+y.\end{equation} The size of your plot is $30m^2$, so $S$ cannot exceed this value: \begin{equation}S = x+y \leq 30\end{equation} It's also clear that $x$ and $y$ both need to be greater than or equal to $0$ (you can't plant a negative amount of crops). Here's how to solve the problem. First, consider a Cartesian coordinate system with the $x$-axis representing cocoa and the $y$-axis representing pineapples. Rewriting inequality 3 and turning it into an equation gives $y=-2x+46,$ the equation of a line. The points $(x,y)$ satisfying inequality 3 are those points that lie underneath that line. Similarly, the points that lie underneath the line $y=-x+30$ satisfy inequality 5. Remembering that both $x$ and $y$ need to be greater than or equal to $0$, we see that the shaded line in the graph below gives us the points in the $(x,y)$-plane satisfying all constraints.
    Graphs

    The red line represents y = -2x + 46 and the blue line represents y = -x + 30. The values of x and y are both positive in the top right quadrant of the coordinate system. Hence, the shaded region contains all the values of x and y that satisfy all the constraints.

    Now what about maximising $P$? Rewriting equation 1 we see that $y=-3/2x+P/2.$ Whatever the value of $P$, this equation gives a line of slope $-3/2$. By increasing the value of $P/2$ from $0$ upwards (use the slider in the Geogebra applet below), we see that the last contact point between the line $y=-3/2x+P/2$ and the shaded region occurs at the corner point $A=(16,14)$ of the shaded region. That's the point for which $P$ is maximised but the constraints are still satisfied. Hence you should plant $x=16$ units of cocoa and $y=14$ units of pineapples. Your return will be $P = 3 \times 16 + 2 \times 14 = 76.$

    Even if the green line, representing the relationship of $P$ and $x$ and $y$, had a different slope, you can convince yourself that $P$ is always maximised at one of the corner points of the shaded region. This is true whatever the numbers in equations 1, 2 and 4. As long as these equations are linear (ie don't involve any powers of $x$ and $y$ or their products), you can solve the problem by finding a shaded region using the constraints, and then working out for which of its corner points $P$ is largest.

    Our method is an example of a linear programming problem, which involves optimising a quantity subject to restraints, when all the relationships are linear. The method can be extended to work with more constraints (this simply gives you a shaded region possibly bounded by more lines) and also to work when more than two variables (crops) are involved. The extended method is called the simplex algorithm. It was invented in 1947 by George Dantzig and has a huge range of applications.

    • Log in or register to post comments

    Read more about...

    linear programming
    graphical methods
    Maths in a minute

    Our Podcast: Maths on the Move

    Our Maths on the Move podcast brings you the latest news from the world of maths, plus interviews and discussions with leading mathematicians and scientists about the maths that is changing our lives.

    Apple Podcasts
    Spotify
    Podbean

    Plus delivered to you

    Keep up to date with Plus by subscribing to our newsletter or following Plus on X or Bluesky.

    University of Cambridge logo

    Plus is part of the family of activities in the Millennium Mathematics Project.
    Copyright © 1997 - 2025. University of Cambridge. All rights reserved.

    Terms