Skip to main content
Home
plus.maths.org

Secondary menu

  • My list
  • About Plus
  • Sponsors
  • Subscribe
  • Contact Us
  • Log in
  • Main navigation

  • Home
  • Articles
  • Collections
  • Podcasts
  • Maths in a minute
  • Puzzles
  • Videos
  • Topics and tags
  • For

    • cat icon
      Curiosity
    • newspaper icon
      Media
    • graduation icon
      Education
    • briefcase icon
      Policy

    Popular topics and tags

    Shapes

    • Geometry
    • Vectors and matrices
    • Topology
    • Networks and graph theory
    • Fractals

    Numbers

    • Number theory
    • Arithmetic
    • Prime numbers
    • Fermat's last theorem
    • Cryptography

    Computing and information

    • Quantum computing
    • Complexity
    • Information theory
    • Artificial intelligence and machine learning
    • Algorithm

    Data and probability

    • Statistics
    • Probability and uncertainty
    • Randomness

    Abstract structures

    • Symmetry
    • Algebra and group theory
    • Vectors and matrices

    Physics

    • Fluid dynamics
    • Quantum physics
    • General relativity, gravity and black holes
    • Entropy and thermodynamics
    • String theory and quantum gravity

    Arts, humanities and sport

    • History and philosophy of mathematics
    • Art and Music
    • Language
    • Sport

    Logic, proof and strategy

    • Logic
    • Proof
    • Game theory

    Calculus and analysis

    • Differential equations
    • Calculus

    Towards applications

    • Mathematical modelling
    • Dynamical systems and Chaos

    Applications

    • Medicine and health
    • Epidemiology
    • Biology
    • Economics and finance
    • Engineering and architecture
    • Weather forecasting
    • Climate change

    Understanding of mathematics

    • Public understanding of mathematics
    • Education

    Get your maths quickly

    • Maths in a minute

    Main menu

  • Home
  • Articles
  • Collections
  • Podcasts
  • Maths in a minute
  • Puzzles
  • Videos
  • Topics and tags
  • Audiences

    • cat icon
      Curiosity
    • newspaper icon
      Media
    • graduation icon
      Education
    • briefcase icon
      Policy

    Secondary menu

  • My list
  • About Plus
  • Sponsors
  • Subscribe
  • Contact Us
  • Log in
  • Outer space: Emergence

    by
    John D. Barrow
    1 September, 2007
    September 2007

    One of the buzz words in the sciences of complexity is emergence. As you build up a complex situation step by step, it appears that thresholds of complexity can be reached which herald the appearance of new structures and new types of behaviour which were not present in the building blocks of the complexity. The World-Wide Web, or the stock market, or human consciousness, seem to be phenomena of this sort. They exhibit collective behaviour which is more than the sum of their parts. If you reduce them to their elementary components, then the essence of the complex behaviour disappears. Such phenomena are common in physics too. A collective property of a liquid, like viscosity, which describes its resistance to flowing, emerges when a large number of molecules combine. It is real but you won't find a little bit of viscosity on each atom of hydrogen and oxygen in your cup of tea.

    The World Wide Web

    The World Wide Web

    Emergence is itself a complex, and occasionally controversial, subject. Philosophers and scientists attempt to define and distinguish between different types of emergence, while a few even dispute whether it really exists. One of the problems is that the most interesting scientific examples, like consciousness or life, are not understood and so there is an unfortunate extra layer of uncertainty attached to these iconic examples. Here, mathematics can help. It gives rise to many interesting emergent structures which are well defined and which suggest ways in which to generalise them into whole families of related examples.

    Take finite collections of positive integers like [1,2,3,6,7,9]. Then, no matter how large they are, they will not possess the properties that emerge when a collection of integers becomes infinite. As Georg Cantor first showed clearly in the 19th century, infinite collections of numbers possess properties not shared by any finite subset of them, no matter how large it may be. Infinity is not just a big number. Add one to it and it stays the same; subtract infinity from it and it can stay the same. The whole is not only bigger than its parts, it also possesses emergent features that are qualitatively different to those of its parts.

    Mobius strip

    Even though the individual squares that make up the surface of the Möbius strip are two-sided, when they are joined together and twisted, the surface as a whole only has one side.

    Many other examples can be found in topology, where the global structure of a space can be strikingly different to its local structure. The most familiar is the Möbius strip. We make one by taking a rectangular strip of paper and gluing the ends together after adding a single twist to the paper. It is possible to make up that strip of paper by sticking together small squares of paper in a patchwork. The Möbius strip then begins to look like a type of emergent structure. All the squares that were put together to make the strip had two sides. But when the ends are twisted and stuck together to form the whole Möbius strip, it has only one side. Again, the whole has an "emergent" property that is not shared by any of its component parts. It emerges only as a consequence of how those parts are organised.

    Perhaps you can think of some other examples of emergent mathematics?


    • Log in or register to post comments

    Read more about...

    emergent behaviour
    outerspace
    mobius strip

    Our Podcast: Maths on the Move

    Our Maths on the Move podcast brings you the latest news from the world of maths, plus interviews and discussions with leading mathematicians and scientists about the maths that is changing our lives.

    Apple Podcasts
    Spotify
    Podbean

    Plus delivered to you

    Keep up to date with Plus by subscribing to our newsletter or following Plus on X or Bluesky.

    University of Cambridge logo

    Plus is part of the family of activities in the Millennium Mathematics Project.
    Copyright © 1997 - 2025. University of Cambridge. All rights reserved.

    Terms