Skip to main content
Home
plus.maths.org

Secondary menu

  • My list
  • About Plus
  • Sponsors
  • Subscribe
  • Contact Us
  • Log in
  • Main navigation

  • Home
  • Articles
  • Collections
  • Podcasts
  • Maths in a minute
  • Puzzles
  • Videos
  • Topics and tags
  • For

    • cat icon
      Curiosity
    • newspaper icon
      Media
    • graduation icon
      Education
    • briefcase icon
      Policy

    Popular topics and tags

    Shapes

    • Geometry
    • Vectors and matrices
    • Topology
    • Networks and graph theory
    • Fractals

    Numbers

    • Number theory
    • Arithmetic
    • Prime numbers
    • Fermat's last theorem
    • Cryptography

    Computing and information

    • Quantum computing
    • Complexity
    • Information theory
    • Artificial intelligence and machine learning
    • Algorithm

    Data and probability

    • Statistics
    • Probability and uncertainty
    • Randomness

    Abstract structures

    • Symmetry
    • Algebra and group theory
    • Vectors and matrices

    Physics

    • Fluid dynamics
    • Quantum physics
    • General relativity, gravity and black holes
    • Entropy and thermodynamics
    • String theory and quantum gravity

    Arts, humanities and sport

    • History and philosophy of mathematics
    • Art and Music
    • Language
    • Sport

    Logic, proof and strategy

    • Logic
    • Proof
    • Game theory

    Calculus and analysis

    • Differential equations
    • Calculus

    Towards applications

    • Mathematical modelling
    • Dynamical systems and Chaos

    Applications

    • Medicine and health
    • Epidemiology
    • Biology
    • Economics and finance
    • Engineering and architecture
    • Weather forecasting
    • Climate change

    Understanding of mathematics

    • Public understanding of mathematics
    • Education

    Get your maths quickly

    • Maths in a minute

    Main menu

  • Home
  • Articles
  • Collections
  • Podcasts
  • Maths in a minute
  • Puzzles
  • Videos
  • Topics and tags
  • Audiences

    • cat icon
      Curiosity
    • newspaper icon
      Media
    • graduation icon
      Education
    • briefcase icon
      Policy

    Secondary menu

  • My list
  • About Plus
  • Sponsors
  • Subscribe
  • Contact Us
  • Log in
  • Outer space: A question of tactics

    by
    John D. Barrow
    3 September, 2010
    Penalty

    Left, right or centre?

    In many sports a particular tactical conundrum arises. The team captain has to choose the best order in which to use a group of players or set-plays in the face of unknown counter choices by the opposition. In what order should you deploy your relay runners on the running track or in the swimming pool? What is the optimum order of play for your golfers in the Ryder Cup tournament? Do you want to field the strongest players first to raise morale or play them last to produce a late run for victory? The same type of choice appears when there is a one-on-one confrontation with different choices of action available. For example, where should you plan to place the ball in each of a series of penalty kicks if your team is in a penalty shootout?

    In each case there are factors and counter factors to weigh up about any choice. If I put our fastest runner on the first leg of the 4x400 metres relay and the slowest on the last, will we benefit by having a long clear run in the lead on the inside lane or disadvantaged by being out in front acting as a windbreak and a target for our fastest opponent in the finishing straight? If my strongest golfer ends up playing the weakest opponent that should be a sure win, but a waste of our best player's strength when he or she could have been pitted against a stronger opponent. If our first two penalties went low to the goalie's left, should we place the next one differently? Or maybe the goalie would never expect us to do the same thing for a third time…? Second guessing, third guessing … there seems to be no end to it.

    In each case it seems that if you adopt a strategy that your opponents get to know about (or guess) beforehand, then they might employ a better one to increase their chances of winning. If your penalty-taking strategy is to hit your penalties in a sequence that places them left-centre-right-left-centre-right-…etc then inflexible adherence to it could be disastrous if the opposing goalie guessed it — or got tipped-off by his spies beforehand.

    Passing the baton

    Relay racing: who should go first?

    Is there a general strategy whose outcomes can never be second guessed by your opponents even if they know it? In fact, there is. It appeals to a handy operational definition that a random sequence is one for which there is no predictive betting strategy that can beat it. If the machine that generates winning lottery numbers is truly random, then there can be no magic formula, no strategy of lucky numbers, birthdays or scrutiny of past statistics, that can beat it in the long run.

    This is the idea we should latch on to in the sports problems we have been listing. If you select where you are going to place your penalty kicks, or order your golfers and freestyle relay swimmers at random, then there is no opposing strategy that can do better in the long run. Even if the opposition knows that you are using a random selection strategy it doesn't help them. They will do best by using a random sequence too, for the same reasons. The goalie should make his choice about staying still or jumping right or left at random to avoid the penalty taker having a superior long-run strategy. Of course, while it doesn't matter if your opponents know you are choosing at random, you mustn't reveal the actual ordering of play that you generated by your random process (for example by tossing a fair coin to place penalties left-right-right-right-left-..): that could obviously be countered. Sometimes randomness is a very useful thing.

    • Log in or register to post comments

    Read more about...

    randomness
    strategy
    mathematics in sport
    outerspace

    Our Podcast: Maths on the Move

    Our Maths on the Move podcast brings you the latest news from the world of maths, plus interviews and discussions with leading mathematicians and scientists about the maths that is changing our lives.

    Apple Podcasts
    Spotify
    Podbean

    Plus delivered to you

    Keep up to date with Plus by subscribing to our newsletter or following Plus on X or Bluesky.

    University of Cambridge logo

    Plus is part of the family of activities in the Millennium Mathematics Project.
    Copyright © 1997 - 2025. University of Cambridge. All rights reserved.

    Terms