Skip to main content
Home
plus.maths.org

Secondary menu

  • My list
  • About Plus
  • Sponsors
  • Subscribe
  • Contact Us
  • Log in
  • Main navigation

  • Home
  • Articles
  • Collections
  • Podcasts
  • Maths in a minute
  • Puzzles
  • Videos
  • Topics and tags
  • For

    • cat icon
      Curiosity
    • newspaper icon
      Media
    • graduation icon
      Education
    • briefcase icon
      Policy

      Popular topics and tags

      Shapes

      • Geometry
      • Vectors and matrices
      • Topology
      • Networks and graph theory
      • Fractals

      Numbers

      • Number theory
      • Arithmetic
      • Prime numbers
      • Fermat's last theorem
      • Cryptography

      Computing and information

      • Quantum computing
      • Complexity
      • Information theory
      • Artificial intelligence and machine learning
      • Algorithm

      Data and probability

      • Statistics
      • Probability and uncertainty
      • Randomness

      Abstract structures

      • Symmetry
      • Algebra and group theory
      • Vectors and matrices

      Physics

      • Fluid dynamics
      • Quantum physics
      • General relativity, gravity and black holes
      • Entropy and thermodynamics
      • String theory and quantum gravity

      Arts, humanities and sport

      • History and philosophy of mathematics
      • Art and Music
      • Language
      • Sport

      Logic, proof and strategy

      • Logic
      • Proof
      • Game theory

      Calculus and analysis

      • Differential equations
      • Calculus

      Towards applications

      • Mathematical modelling
      • Dynamical systems and Chaos

      Applications

      • Medicine and health
      • Epidemiology
      • Biology
      • Economics and finance
      • Engineering and architecture
      • Weather forecasting
      • Climate change

      Understanding of mathematics

      • Public understanding of mathematics
      • Education

      Get your maths quickly

      • Maths in a minute

      Main menu

    • Home
    • Articles
    • Collections
    • Podcasts
    • Maths in a minute
    • Puzzles
    • Videos
    • Topics and tags
    • Audiences

      • cat icon
        Curiosity
      • newspaper icon
        Media
      • graduation icon
        Education
      • briefcase icon
        Policy

      Secondary menu

    • My list
    • About Plus
    • Sponsors
    • Subscribe
    • Contact Us
    • Log in
    • Outer space: The rule of two

      John D. Barrow
      1 September, 2005
      September 2005

      Infinities are tricky things and have perplexed mathematicians and philosophers for thousands of years. Sometimes a never-ending list of numbers will become infinitely large; sometimes it will get closer and closer to a definite number; sometimes it will defy having any type of definite limit at all. A little while ago I was giving a talk about "Infinity" that included a look at the simple geometric series

      S=12+14+18+116+132+164+...

      and so on, forever. Every term in the sum exactly half the size of its predecessor. The sum of this series is actually equal to 1 but someone in the audience who wasn't a mathematician wanted to know if there was any way that he could see why that was true.

      diagram

      Fortunately, there is an impressive demonstration that just uses a picture. Draw a square of size 1×1, so its area is 1. Now divide the square in half, into two rectangles, by drawing a line from top to bottom. Each of them must have an area 12. Now divide one of these rectangles in two to make two smaller rectangles, each with area equal to 14. Now divide one of these smaller rectangles in half to make two more rectangles, each of area equal to 18. Keep on going like this, making a rectangle of half the area of the previous one, and look at the picture. The original square has just had its whole area subdivided into a never-ending sequence of regions that fill it completely. The total area of the square is equal to the sum of the areas of the pieces that I have left intact at each stage of the cutting process and the areas of these pieces is just equal to our series S. So the sum of the series S must be equal to 1, the total area of the square.

      Usually when we encounter a series like S for the first time we work out its sum in another way. We notice that each successive term is one half of the previous one and then multiply the whole series by 12 so we have 12×S=14+18+116+132+164+... But we notice that the series on the right is just the original series, S, minus the first term, which is 12 . So we have that 12×S=S−12. and S = 1 again.

      Here is a little problem involving this series. If you live in the United Kingdom you will know that the sales tax added on to many purchases is called "Value Added Tax", or VAT. It amounts to 17.5% of the price of the goods bought. If we suppose that the 17.5% rate of VAT was devised to allow it to be easily calculated by mental arithmetic, what do you expect the next increase in the rate of VAT to be ? And what will the VAT rate grow to be in the infinite future?!



      • Log in or register to post comments

      Read more about...

      infinite series
      infinity
      outerspace
      University of Cambridge logo

      Plus Magazine is part of the family of activities in the Millennium Mathematics Project.
      Copyright © 1997 - 2025. University of Cambridge. All rights reserved.

      Terms