Skip to main content
Home
plus.maths.org

Secondary menu

  • My list
  • About Plus
  • Sponsors
  • Subscribe
  • Contact Us
  • Log in
  • Main navigation

  • Home
  • Articles
  • Collections
  • Podcasts
  • Maths in a minute
  • Puzzles
  • Videos
  • Topics and tags
  • For

    • cat icon
      Curiosity
    • newspaper icon
      Media
    • graduation icon
      Education
    • briefcase icon
      Policy

    Popular topics and tags

    Shapes

    • Geometry
    • Vectors and matrices
    • Topology
    • Networks and graph theory
    • Fractals

    Numbers

    • Number theory
    • Arithmetic
    • Prime numbers
    • Fermat's last theorem
    • Cryptography

    Computing and information

    • Quantum computing
    • Complexity
    • Information theory
    • Artificial intelligence and machine learning
    • Algorithm

    Data and probability

    • Statistics
    • Probability and uncertainty
    • Randomness

    Abstract structures

    • Symmetry
    • Algebra and group theory
    • Vectors and matrices

    Physics

    • Fluid dynamics
    • Quantum physics
    • General relativity, gravity and black holes
    • Entropy and thermodynamics
    • String theory and quantum gravity

    Arts, humanities and sport

    • History and philosophy of mathematics
    • Art and Music
    • Language
    • Sport

    Logic, proof and strategy

    • Logic
    • Proof
    • Game theory

    Calculus and analysis

    • Differential equations
    • Calculus

    Towards applications

    • Mathematical modelling
    • Dynamical systems and Chaos

    Applications

    • Medicine and health
    • Epidemiology
    • Biology
    • Economics and finance
    • Engineering and architecture
    • Weather forecasting
    • Climate change

    Understanding of mathematics

    • Public understanding of mathematics
    • Education

    Get your maths quickly

    • Maths in a minute

    Main menu

  • Home
  • Articles
  • Collections
  • Podcasts
  • Maths in a minute
  • Puzzles
  • Videos
  • Topics and tags
  • Audiences

    • cat icon
      Curiosity
    • newspaper icon
      Media
    • graduation icon
      Education
    • briefcase icon
      Policy

    Secondary menu

  • My list
  • About Plus
  • Sponsors
  • Subscribe
  • Contact Us
  • Log in
  • Plus Advent Calendar Door #2: Computational fluid dynamics

    2 December, 2021

    Suppose you want to design the fastest car, engineer a replacement heart valve or simulate the flow of air in a building to limit the risk of infectious disease. All of these rely on fluid dynamics, which can lead to some pretty tricky mathematics.

    The flow of fluids, be they air, blood or any other, is described by the Navier-Stokes equations. You can read more about these equations here, but on first glance you'll get a sense of how hard they are to solve.

    The Navier-Stokes equations.

    The Navier-Stokes equations.

    If you want to use these equations to simulate the flow of a fluid around a car, heart valve or building, you need to solve them for your specific scenario: that is, you want a mathematical formula giving you the velocity and pressure of the fluid at every point in your system. But the hitch is there are no exact solutions for the most general forms of the Navier-Stokes equations, and the exact solutions that do exist are for simplified problems of no physical interest.

    Thankfully, applying fluid dynamics in the real world is possible thanks to computational fluid dynamics. As Ben Evans explained in his article Supersonic Bloodhound, you have to break the problem down into smaller, more manageable chunks, using a method known as the finite element method. "In essence, we divide the space surrounding the car into a massive assortment of very small elements (100,000 million of them!). We call this a mesh. Then we tackle the problem element by element, each element making a simplified approximation to the solution across it, and with each element in constant discussions with its neighbours, until we have the complete solution. From this solution we get the air density, air velocity, air temperature and air pressure at all points surrounding the car."

    A mesh for solving the Navier-Stokes equations.

    A mesh for solving the Navier-Stokes equations.

    Once Evans has used this method to calculate how the pressure over a vehicle varies as it accelerates up to its top speed, he can use integration to sum up the effects of this pressure over the vehicle and work out the total forces. "The procedure is very similar to the trapezium rule, which estimates the area under a curve by approximating it by trapezia, and then summing their areas."

    Pressure contours

    Pressure contours and streamlines over Bloodhound SSC.

    You can find out how computational fluid dynamics helped Evans answer questions such as how much drag his supersonic car would experience, and whether it can stay on the ground at all speeds, and how this drove the design process of the car and particularly its external shape (in the articles Supersonic Bloodhoud and The fastest mathematician on Earth). And you can find out more about how it is used in areas such as biomedical engineering and aerosol physics to keep us healthy.

    This article is partly based on a section of Supersonic Bloodhoud, by Ben Evans.

    Return to the Plus advent calendar 2021.


    This article was produced as part of our collaboration with the Isaac Newton Institute for Mathematical Sciences (INI) – you can find all the content from our collaboration here. The INI is an international research centre and our neighbour here on the University of Cambridge's maths campus. It attracts leading mathematical scientists from all over the world, and is open to all. Visit www.newton.ac.uk to find out more.

    INI logo

    • Log in or register to post comments

    Read more about...

    advent calendar 2021
    INI

    Our Podcast: Maths on the Move

    Our Maths on the Move podcast brings you the latest news from the world of maths, plus interviews and discussions with leading mathematicians and scientists about the maths that is changing our lives.

    Apple Podcasts
    Spotify
    Podbean

    Plus delivered to you

    Keep up to date with Plus by subscribing to our newsletter or following Plus on X or Bluesky.

    University of Cambridge logo

    Plus is part of the family of activities in the Millennium Mathematics Project.
    Copyright © 1997 - 2025. University of Cambridge. All rights reserved.

    Terms