Skip to main content
Home
plus.maths.org

Secondary menu

  • My list
  • About Plus
  • Sponsors
  • Subscribe
  • Contact Us
  • Log in
  • Main navigation

  • Home
  • Articles
  • Collections
  • Podcasts
  • Maths in a minute
  • Puzzles
  • Videos
  • Topics and tags
  • For

    • cat icon
      Curiosity
    • newspaper icon
      Media
    • graduation icon
      Education
    • briefcase icon
      Policy

    Popular topics and tags

    Shapes

    • Geometry
    • Vectors and matrices
    • Topology
    • Networks and graph theory
    • Fractals

    Numbers

    • Number theory
    • Arithmetic
    • Prime numbers
    • Fermat's last theorem
    • Cryptography

    Computing and information

    • Quantum computing
    • Complexity
    • Information theory
    • Artificial intelligence and machine learning
    • Algorithm

    Data and probability

    • Statistics
    • Probability and uncertainty
    • Randomness

    Abstract structures

    • Symmetry
    • Algebra and group theory
    • Vectors and matrices

    Physics

    • Fluid dynamics
    • Quantum physics
    • General relativity, gravity and black holes
    • Entropy and thermodynamics
    • String theory and quantum gravity

    Arts, humanities and sport

    • History and philosophy of mathematics
    • Art and Music
    • Language
    • Sport

    Logic, proof and strategy

    • Logic
    • Proof
    • Game theory

    Calculus and analysis

    • Differential equations
    • Calculus

    Towards applications

    • Mathematical modelling
    • Dynamical systems and Chaos

    Applications

    • Medicine and health
    • Epidemiology
    • Biology
    • Economics and finance
    • Engineering and architecture
    • Weather forecasting
    • Climate change

    Understanding of mathematics

    • Public understanding of mathematics
    • Education

    Get your maths quickly

    • Maths in a minute

    Main menu

  • Home
  • Articles
  • Collections
  • Podcasts
  • Maths in a minute
  • Puzzles
  • Videos
  • Topics and tags
  • Audiences

    • cat icon
      Curiosity
    • newspaper icon
      Media
    • graduation icon
      Education
    • briefcase icon
      Policy

    Secondary menu

  • My list
  • About Plus
  • Sponsors
  • Subscribe
  • Contact Us
  • Log in
  • Plus Magazine

    1 September, 2006
    September 2006

    Superficiality: solution

    Is it better for you to stay in one group or to split up into two or more smaller groups? This was a problem faced by naval convoys trying to avoid being found by enemy submarines during World War II, and it was also the problem posed in last issue's Outer Space.

    It is better to stay in a big convoy rather than to divide. Suppose that a big convoy covers an area A and the ships are as close together as they can be, so that if we divide the convoy into two smaller ones of area A/2 the spacings between ships are the same. The single convoy has a perimeter equal to $ p = \pi \sqrt{A/\pi},$ but the total perimeter of the two smaller convoys equals $p \times \sqrt{2},$ which is bigger. So, the total perimeter distance that has to be patrolled by destroyers to protect the two smaller convoys from being penetrated by submarines is greater than that to be patrolled if it stays as a single convoy. Also, when the submarine searches for convoys to attack, its chance of seeing them is proportional to their diameter, because this is what you see in the periscope. The diameter of the single circular convoy of area A is just $\sqrt{A/\pi},$ whereas the sum of the two diameters of the convoys of area A/2 that don't overlap in the field of view is bigger by a factor of $\sqrt{2},$ and so the divided convoy is more likely to be detected by the attacking submarine than is the single one.

    So, a single convoy is harder to detect and easier to defend than a divided one.


    Further reading

    The book The Pleasures of counting by TW Korner, which is reviewed in Issue 13 of Plus, explores more naval and aerial maths problems.Back to Outer space
    • Log in or register to post comments

    Read more about...

    outerspace

    Our Podcast: Maths on the Move

    Our Maths on the Move podcast brings you the latest news from the world of maths, plus interviews and discussions with leading mathematicians and scientists about the maths that is changing our lives.

    Apple Podcasts
    Spotify
    Podbean

    Plus delivered to you

    Keep up to date with Plus by subscribing to our newsletter or following Plus on X or Bluesky.

    University of Cambridge logo

    Plus is part of the family of activities in the Millennium Mathematics Project.
    Copyright © 1997 - 2025. University of Cambridge. All rights reserved.

    Terms