We all know what symmetry is. But why does it play such a central role in modern physics?

A closer look at the power of symmetry in physics.

Celebrating the 150th anniversary of Maxwell's equations we talk to physicist John Ellis about what they mean for modern technology and our understanding of the Universe.

An impossible equation, two tragic heroes and the mathematical study of symmetry

Why (some) physicists want to modify Einstein's general theory of relativity.

Physicists love symmetry, but they get even more excited about symmetry breaking. They even believe that many of the features of the world we live in are a result of it. What do they mean by that?

The laws of symmetry are unforgiving, but a team of researchers from the US have come up with a pattern-producing technique that seems to cheat them. The new technique is called moiré nanolithography and the researchers hope that it will find useful applications in the production of solar panels and many other optical devices.

Detail of M-theory multiple, Grenville Davey. Image © Isaac Newton Institute

On the face of it, an artist and a theoretical physicist might seem an unlikely pairing. But Turner Prize-winning sculptor Grenville Davey and string theorist David Berman's collaboration is producing beautiful, thought-provoking work inspired by the fundamental structure of the Universe. Julia Hawkins interviewed them to find out more about how the Higgs boson and T-duality are giving rise to art.

In the first part of this article we explored Landau's theory of phase transitions in materials such as magnets. We now go on to see how this theory formed the basis of the Higgs mechanism, which postulates the existence of the mysterious Higgs boson and explains how the particles that make up our Universe came to have mass.

It's official: the notorious Higgs boson has been discovered at the Large Hadron Collider at CERN. The Higgs is a subatomic particle whose existence was predicted by theoretical physics. Also termed the god particle, the Higgs boson is said to have given other particles their mass. But how did it do that? In this two-part article we explore the so-called Higgs mechanism, starting with the humble bar magnet and ending with a dramatic transformation of the early Universe.
Syndicate content