Articles

  • article

    Radioactive decay and exponential laws

    Arguably, the exponential function crops up more than any other when using mathematics to describe the physical world. In the second of two articles on physical phenomena which obey exponential laws, Ian Garbett discusses radioactive decay.
  • article

    Adam Smith and the invisible hand

    Adam Smith is often thought of as the father of modern economics. In his book "An Inquiry into the Nature and Causes of the Wealth of Nations" Smith decribed the "invisible hand" mechanism by which he felt economic society operated. Modern game theory has much to add to Smith's description.
  • article
    icon

    Game theory and the Cuban missile crisis

    Steven J. Brams uses the Cuban missile crisis to illustrate the Theory of Moves, which is not just an abstract mathematical model but one that mirrors the real-life choices, and underlying thinking, of flesh-and-blood decision makers.

  • article

    Prize specimens

    Last October, two mathematicians won £1m when it was revealed that they were the first to solve the Eternity jigsaw puzzle. It had taken them six months and a generous helping of mathematical analysis. Mark Wainwright meets the pair and finds out how they did it.
  • article

    Light attenuation and exponential laws

    Arguably, the exponential function crops up more than any other when using mathematics to describe the physical world. In the first of two articles on physical phenomena which obey exponential laws, Ian Garbett discusses light attenuation - the way in which light decreases in intensity as it passes through a medium.
  • article

    Modelling, step by step

    Why can't human beings walk as fast as they run? And why do we prefer to break into a run rather than walk above a certain speed? Using mathematical modelling, R. McNeill Alexander finds some answers.
  • article

    Mathematical mysteries: Getting the most out of life - Part 1

    There are many sorts of games played in a "bunco booth", where a trickster or sleight-of-hand expert tries to relieve you of your money by getting you to place bets - on which cup the ball is under, for instance, or where the queen of spades is. Lots of these games can be analysed using probability theory, and it soon becomes obvious that the games are tipped heavily in favour of the trickster!
  • article

    Getting the most out of life - Part 2

    The idea is this. To start with, you will choose an envelope at random, say by tossing a coin, and look at its contents, which is a cheque for some number - say n. (By randomising like this, you can be sure I haven't subconsciously induced you to prefer one envelope or the other.) You want to make sure that the bigger the number is, the more likely you are to keep it, in other words, the less likely you are to swap.
  • article

    Rogue trading?

    The dangers of trading derivatives have been well-known ever since they were catapulted into the public eye by the spectacular losses of Nick Leeson and Barings Bank. John Dickson explains what derivatives are, and how they can be both risky, and used to reduce risk.
  • article

    From quasicrystals to Kleenex

    This pattern with kite-shaped tiles can be extended to cover any area, but however big we make it, the pattern never repeats itself. Alison Boyle investigates aperiodic tilings, which have had unexpected applications in describing new crystal structures.
  • article

    On the dissecting table

    Bill Casselman writes about the intriguing amateur mathematician Henry Perigal, who took his elegant proof of Pythagoras' Theorem literally to his grave - by having it carved on his tombstone.
  • article
    blurry image of people

    Friends and strangers

    Sometimes a mathematical object can be so big that, however disorderly we make the object, areas of order are bound to emerge. Imre Leader looks at the colourful world of Ramsey Theory.