Articles

  • article

    Getting the most out of life - Part 2

    The idea is this. To start with, you will choose an envelope at random, say by tossing a coin, and look at its contents, which is a cheque for some number - say n. (By randomising like this, you can be sure I haven't subconsciously induced you to prefer one envelope or the other.) You want to make sure that the bigger the number is, the more likely you are to keep it, in other words, the less likely you are to swap.
  • article

    Game theory and the Cuban missile crisis

    Steven J. Brams uses the Cuban missile crisis to illustrate the Theory of Moves, which is not just an abstract mathematical model but one that mirrors the real-life choices, and underlying thinking, of flesh-and-blood decision makers.
  • article

    Prize specimens

    Last October, two mathematicians won £1m when it was revealed that they were the first to solve the Eternity jigsaw puzzle. It had taken them six months and a generous helping of mathematical analysis. Mark Wainwright meets the pair and finds out how they did it.
  • article

    Light attenuation and exponential laws

    Arguably, the exponential function crops up more than any other when using mathematics to describe the physical world. In the first of two articles on physical phenomena which obey exponential laws, Ian Garbett discusses light attenuation - the way in which light decreases in intensity as it passes through a medium.
  • article

    Maths on the tube

    During World Mathematical Year 2000 a sequence of posters were displayed month by month in the trains of the London Underground aiming to stimulate, fascinate - even infuriate passengers! Keith Moffatt tells us about three of the posters from the series.
  • article

    Mathematical mysteries: What colour is my hat?

    This is a game played between a team of 3 people (Ann, Bob and Chris, say), and a TV game show host. The team enters the room, and the host places a hat on each of their heads. Each hat is either red or blue at random (the host tosses a coin for each team-member to decide which colour of hat to give them). The players can see each others' hats, but no-one can see their own hat.
  • article

    Mathematical mysteries: Zeno's Paradoxes

    The paradoxes of the philosopher Zeno, born approximately 490 BC in southern Italy, have puzzled mathematicians, scientists and philosophers for millennia. Although none of his work survives today, over 40 paradoxes are attributed to him which appeared in a book he wrote as a defense of the philosophies of his teacher Parmenides.
  • article

    Rogue trading?

    The dangers of trading derivatives have been well-known ever since they were catapulted into the public eye by the spectacular losses of Nick Leeson and Barings Bank. John Dickson explains what derivatives are, and how they can be both risky, and used to reduce risk.
  • article

    From quasicrystals to Kleenex

    This pattern with kite-shaped tiles can be extended to cover any area, but however big we make it, the pattern never repeats itself. Alison Boyle investigates aperiodic tilings, which have had unexpected applications in describing new crystal structures.
  • article

    On the dissecting table

    Bill Casselman writes about the intriguing amateur mathematician Henry Perigal, who took his elegant proof of Pythagoras' Theorem literally to his grave - by having it carved on his tombstone.