Skip to main content
Home
plus.maths.org

Secondary menu

  • My list
  • About Plus
  • Sponsors
  • Subscribe
  • Contact Us
  • Log in
  • Main navigation

  • Home
  • Articles
  • Collections
  • Podcasts
  • Maths in a minute
  • Puzzles
  • Videos
  • Topics and tags
  • For

    • cat icon
      Curiosity
    • newspaper icon
      Media
    • graduation icon
      Education
    • briefcase icon
      Policy

      Popular topics and tags

      Shapes

      • Geometry
      • Vectors and matrices
      • Topology
      • Networks and graph theory
      • Fractals

      Numbers

      • Number theory
      • Arithmetic
      • Prime numbers
      • Fermat's last theorem
      • Cryptography

      Computing and information

      • Quantum computing
      • Complexity
      • Information theory
      • Artificial intelligence and machine learning
      • Algorithm

      Data and probability

      • Statistics
      • Probability and uncertainty
      • Randomness

      Abstract structures

      • Symmetry
      • Algebra and group theory
      • Vectors and matrices

      Physics

      • Fluid dynamics
      • Quantum physics
      • General relativity, gravity and black holes
      • Entropy and thermodynamics
      • String theory and quantum gravity

      Arts, humanities and sport

      • History and philosophy of mathematics
      • Art and Music
      • Language
      • Sport

      Logic, proof and strategy

      • Logic
      • Proof
      • Game theory

      Calculus and analysis

      • Differential equations
      • Calculus

      Towards applications

      • Mathematical modelling
      • Dynamical systems and Chaos

      Applications

      • Medicine and health
      • Epidemiology
      • Biology
      • Economics and finance
      • Engineering and architecture
      • Weather forecasting
      • Climate change

      Understanding of mathematics

      • Public understanding of mathematics
      • Education

      Get your maths quickly

      • Maths in a minute

      Main menu

    • Home
    • Articles
    • Collections
    • Podcasts
    • Maths in a minute
    • Puzzles
    • Videos
    • Topics and tags
    • Audiences

      • cat icon
        Curiosity
      • newspaper icon
        Media
      • graduation icon
        Education
      • briefcase icon
        Policy

      Secondary menu

    • My list
    • About Plus
    • Sponsors
    • Subscribe
    • Contact Us
    • Log in
    • A first swirling glimpse of inflation and gravity waves

      17 March, 2014

      As we sat in a roomful of eager astronomers, cosmologists and theoretical physicists today, while they tried repeatedly and unsuccessfully to connect to a live webcast of what is being called by some "the discovery of the century" , we began to suspect that it might well be easier to detect gravitational waves from the early Universe than a livefeed from Harvard.

      The announcement that had everyone so excited was from the BICEP2 project, a collaboration of researchers based in the US using data gathered from a specially designed telescope at the South Pole. They had observed the tell-tale swirls of gravitational waves in the Cosmic Microwave Background (CMB) radiation, providing the first direct evidence for the inflationary theory for the evolution of the Universe and the first ever image of gravitational waves.

      Gravitational waves from inflation generate a faint but distinctive twisting pattern in the polarisation of the CMB, known as a curl

      Gravitational waves from inflation generate a faint but distinctive twisting pattern in the polarisation of the CMB, known as a curl.

      Einstein's theory of general relativity explained gravity as matter causing the curvature of space-time. And, just as stirring water with a stick produces ripples, the movement of large masses can create ripples in space-time. (You can read more in How does gravity work? and Catching waves with Kip Thorne.) These ripples are gravitational waves and they have a tidal effect, squeezing space-time in one way and stretching it in another, both perpendicular to the direction in which the wave travels. Gravitational waves have been indirectly observed previously, such as in the discovery of a binary star system (containing a pulsar and a neutron star) by Russell Hulse and Joseph Taylor in 1974, where the gravitational waves were inferred from the precise rate of decay in the pulsar's orbit. The swirls BICEP2 have revealed in the CMB are the result of gravity waves interacting with light shortly before the CMB was released, providing a clear image of the effect of gravitational waves.

      The various inflationary models of the Universe all predict a brief period of exponential expansion of the Universe shortly after the Big Bang. This rapid expansion magnifies any quantum fluctuations and this sudden stretching of differences in density caused gravitational waves to ripple through the fabric of the early Universe. When photons finally escaped from the grip of matter about 380,000 years after the Big Bang, in a burst of radiation known as the CMB (read more here) the light was polarised as it scattered off the matter that was feeling the effects of these gravitational waves. This polarisation curled the light in the CMB into clockwise and anticlockwise swirls seen in the images released today.

      The scale of the universe versus time

      The scale of the Universe versus time. Inflation magnifies quantum fluctuations that were present just after the Big Bang, resulting in gravitational waves that leave a characteristic signature on the CMB.

      The Dark Sector Lab (DSL), located 3/4 of a mile from the Geographic South Pole, houses the BICEP2 telescope (left) and the South Pole Telescope (right). (Steffen Richter, Harvard University)

      The Dark Sector Lab (DSL), located 3/4 of a mile from the Geographic South Pole, houses the BICEP2 telescope (left) and the South Pole Telescope (right). (Steffen Richter, Harvard University)

      The BICEP2 experiment was conducted in the cold dry stable air of the south pole, "the closest you can get to space and still be on the ground" said John Kovac, one of the researchers. When the project began they did not expect to see these swirls, in fact they were expecting to confirm previous suspicions that they didn't exist at all. One of the investigators, Clement Pryke, told New Scientist that they expected to prove that the signal was so small that it wasn't worth trying any harder to find it: "Instead, it is loud and clear."

      If these results turn out to be as exciting as they promise it is a great advance not just in giving firm evidence for the inflationary theory, but for narrowing down the possible shape such a theory can take. There are different recipes for inflation, each with different ingredients measured out in different amounts. The BICEP2 data is strong evidence for a particular ingredient, r, the ratio of the strength of the fluctuations in the gravity waves to the fluctuations in density (called the tensor-to-scalar ratio), to have a value of 0.2, significantly higher than that calculated from other observations, such as from the Planck satellite. There are already speculations as to how this tension between the values from these two data sets can be resolved, but the value from the BICEP2 data seems to support the simplest possible models of inflation.

      As you read this scientists all over the world are poring over the newly released paper reporting this discovery. We'll have to wait to see their official reaction but those we have spoken to so far have been very positive. If the discovery is confirmed it might result in new names on the list of potential Nobel laureates. And more importantly, it will help further unravel the story of how our Universe evolved.

      Read more about...
      cosmology
      inflation
      cosmic microwave background radiation
      gravitational wave
      • Log in or register to post comments

      Read more about...

      cosmology
      inflation
      cosmic microwave background radiation
      gravitational wave
      University of Cambridge logo

      Plus is part of the family of activities in the Millennium Mathematics Project.
      Copyright © 1997 - 2025. University of Cambridge. All rights reserved.

      Terms