Skip to main content
Home
plus.maths.org

Secondary menu

  • My list
  • About Plus
  • Sponsors
  • Subscribe
  • Contact Us
  • Log in
  • Main navigation

  • Home
  • Articles
  • Collections
  • Podcasts
  • Maths in a minute
  • Puzzles
  • Videos
  • Topics and tags
  • For

    • cat icon
      Curiosity
    • newspaper icon
      Media
    • graduation icon
      Education
    • briefcase icon
      Policy

      Popular topics and tags

      Shapes

      • Geometry
      • Vectors and matrices
      • Topology
      • Networks and graph theory
      • Fractals

      Numbers

      • Number theory
      • Arithmetic
      • Prime numbers
      • Fermat's last theorem
      • Cryptography

      Computing and information

      • Quantum computing
      • Complexity
      • Information theory
      • Artificial intelligence and machine learning
      • Algorithm

      Data and probability

      • Statistics
      • Probability and uncertainty
      • Randomness

      Abstract structures

      • Symmetry
      • Algebra and group theory
      • Vectors and matrices

      Physics

      • Fluid dynamics
      • Quantum physics
      • General relativity, gravity and black holes
      • Entropy and thermodynamics
      • String theory and quantum gravity

      Arts, humanities and sport

      • History and philosophy of mathematics
      • Art and Music
      • Language
      • Sport

      Logic, proof and strategy

      • Logic
      • Proof
      • Game theory

      Calculus and analysis

      • Differential equations
      • Calculus

      Towards applications

      • Mathematical modelling
      • Dynamical systems and Chaos

      Applications

      • Medicine and health
      • Epidemiology
      • Biology
      • Economics and finance
      • Engineering and architecture
      • Weather forecasting
      • Climate change

      Understanding of mathematics

      • Public understanding of mathematics
      • Education

      Get your maths quickly

      • Maths in a minute

      Main menu

    • Home
    • Articles
    • Collections
    • Podcasts
    • Maths in a minute
    • Puzzles
    • Videos
    • Topics and tags
    • Audiences

      • cat icon
        Curiosity
      • newspaper icon
        Media
      • graduation icon
        Education
      • briefcase icon
        Policy

      Secondary menu

    • My list
    • About Plus
    • Sponsors
    • Subscribe
    • Contact Us
    • Log in
    • Listening out for alien life

      24 May, 2011

      Astronomers at the University of California, Berkeley, have this month trained the world's largest steerable radio telescope on 86 Earth-like planets. The data collected by the telescope will later be analsyed by an estimated one million amateur alien hunters, the users of SETI@home, for messages from other civilisations. SETI@home is a distributed computing programme which uses people's home computers in the search for extraterrestrial intelligence.

      "We've picked out the planets with nice temperatures — between zero and 100 degrees Celsius — because they are a lot more likely to harbour life," says physicist Dan Werthimer, chief scientist for SETI@home and a veteran SETI researcher.

      Robert C. Byrd Green Bank Telescope

      The Robert C. Byrd Green Bank Telescope in West Virgina. Image courtesy of NRAO/AUI.

      Werthimer's 30-year-old SETI project normally uses the world's largest radio telescope, the Arecibo receiver in Puerto Rico. But the giant "ear" used for this new search will be the Robert C. Byrd Green Bank Telescope in West Viriginia. It can focus on an area of the northern sky that Arecibo cannot view and it can also scan a larger range of wavelengths, including those away from the region traditionally favoured by alien hunters, called the waterhole. This means that even if aliens are not intentionally sending mesages to us, we may be able to listen in on their private communications.

      If you listen out for signals from space, what you hear is a lot of noise. The galaxy itself produces noise at the lower end of the electromagnetic spectrum and atmospheric processes emit noise at the higher end. But inbetween these two extremes, there is a relatively quiet region: an intelligent civilisation trying to send messages across the Universe are likely to use this quieter range in their communications.

      It just so happens that this quieter region of the spectrum is associated with the two constituents of water, hydrogen (H) and hydroxyl ion (OH). Both of these emit radio waves, the former with a wavelength of 21cm (1420.40 MHz) and the latter with a wavelength of 18cm (1660 MHz). The band from 18cm to 21cm wavelengths lies within the quieter zone of the spectrum. The idea is that water-based life-forms would recognise these important markers on the spectrum and use them in an attempt to communicate with the rest of the cosmos. For this reason the band is called the waterhole — a place for life to meet and chat. "This is an interesting place, perhaps a beacon frequency, to look for signals from extraterrestrial civilisations," says Andrew Siemion, a graduate student from UC Berkeley.

      The Arecibo telescope does indeed focus on a range centering on the 21cm line, but Werthimer says that it's worth widening the search. "Searching for ET around the 21 centimeter line works if civilisations are broadcasting intentionally, but what if planets are leaking signals like 'I Love Lucy'? With a new data recorder on the Green Bank telescope, we can scan a 800 MHz range of frequencies simultaneously, which is 300 times the range we can get at Arecibo."

      The 86 planets the telescope will investigate were chosen from the 1,235 planetary systems spotted by the Kepler space telescope in our galaxy. After it has targeted each of these systems, the Green Bank telescope will scan the entire viewing field of Kepler for signals from other planets too. "If you extrapolate from the Kepler data, there could be 50 billion planets in the galaxy," says Werthimer. "It's really exciting to be able to look at this first batch of Earth-like planets."

      SETI@home users can expect the first Green Bank data to arrive at their computers in about two months and the complete analysis could take up to a year.


      Further reading

      Find out more about alien life in the articles:

      • Hunting for life in alien worlds
      • Oops!
      • Life as we don't know it

      And about distributed computing in the articles:

      • Charity begins @home
      • Help defeat malaria in Africa
      Read more about...
      SETI
      alien life
      radio wave
      distributed computing
      • Log in or register to post comments

      Read more about...

      SETI
      alien life
      radio wave
      distributed computing
      University of Cambridge logo

      Plus Magazine is part of the family of activities in the Millennium Mathematics Project.
      Copyright © 1997 - 2025. University of Cambridge. All rights reserved.

      Terms