Skip to main content
Home
plus.maths.org

Secondary menu

  • My list
  • About Plus
  • Sponsors
  • Subscribe
  • Contact Us
  • Log in
  • Main navigation

  • Home
  • Articles
  • Collections
  • Podcasts
  • Maths in a minute
  • Puzzles
  • Videos
  • Topics and tags
  • For

    • cat icon
      Curiosity
    • newspaper icon
      Media
    • graduation icon
      Education
    • briefcase icon
      Policy

    Popular topics and tags

    Shapes

    • Geometry
    • Vectors and matrices
    • Topology
    • Networks and graph theory
    • Fractals

    Numbers

    • Number theory
    • Arithmetic
    • Prime numbers
    • Fermat's last theorem
    • Cryptography

    Computing and information

    • Quantum computing
    • Complexity
    • Information theory
    • Artificial intelligence and machine learning
    • Algorithm

    Data and probability

    • Statistics
    • Probability and uncertainty
    • Randomness

    Abstract structures

    • Symmetry
    • Algebra and group theory
    • Vectors and matrices

    Physics

    • Fluid dynamics
    • Quantum physics
    • General relativity, gravity and black holes
    • Entropy and thermodynamics
    • String theory and quantum gravity

    Arts, humanities and sport

    • History and philosophy of mathematics
    • Art and Music
    • Language
    • Sport

    Logic, proof and strategy

    • Logic
    • Proof
    • Game theory

    Calculus and analysis

    • Differential equations
    • Calculus

    Towards applications

    • Mathematical modelling
    • Dynamical systems and Chaos

    Applications

    • Medicine and health
    • Epidemiology
    • Biology
    • Economics and finance
    • Engineering and architecture
    • Weather forecasting
    • Climate change

    Understanding of mathematics

    • Public understanding of mathematics
    • Education

    Get your maths quickly

    • Maths in a minute

    Main menu

  • Home
  • Articles
  • Collections
  • Podcasts
  • Maths in a minute
  • Puzzles
  • Videos
  • Topics and tags
  • Audiences

    • cat icon
      Curiosity
    • newspaper icon
      Media
    • graduation icon
      Education
    • briefcase icon
      Policy

    Secondary menu

  • My list
  • About Plus
  • Sponsors
  • Subscribe
  • Contact Us
  • Log in
  • A Nobel Prize for quantum optics

    by
    Marianne Freiberger
    9 October, 2012

    Quantum mechanics predicts the bizarrest things. Tiny particles like electrons can simultaneously be in two places, or, more generally, in two states that would seem mutually exclusive in our everyday experience of physics. Similarly weirdly, particles that have once interacted can remain entangled even when they're moved far apart and then influence each other instantaneously, something which Einstein called "spooky action at a distance". These seemingly magical properties could be exploited for exciting real-world applications, if it wasn't for another strange consequence of quantum mechanics: that by simply looking at a quantum system you destroy many of its properties. (Find out more in this Plus article.)

    Serge Haroche

    Serge Haroche.

    The 2012 Nobel Prize for Physics has been awarded to Serge Haroche and David J. Wineland for (independently) finding ways of observing certain aspects of quantum systems without destroying them. Haroche, of the Collège de France and Ecole Normale Supérieure in Paris, found a way of trapping individual photons (particles of light) for a record-breaking amount of time. Using extremely reflective mirrors which bounce the photons back and forth, Haroche was able to keep the photons "alive" for almost a tenth of a second, during which time they would have travelled around 40,000km. Cleverly devised experiments then allowed him to measure and count individual photons without destroying them. They also allowed him to use quantum entanglement to trace how a quantum system changes from a state of superposition — being in two states at once — to the state of definite existence we expect based on our everyday experience.

    David Wineland, from the University of Colorado, Boulder, used carefully tuned laser pulses to put electrically charged atoms in a state of superposition, for example occupying two different energy levels at once.

    Haroche and Wineland's work is interesting to theorists and experimentalists alike. On the theoretical side, it gives some insight into one of the greatest mysteries of quantum mechanics: exactly how the act of measuring interferes with a quantum system, so that a particle which is in a state of superposition collapses into a single state.

    David Wineland

    David Wineland.

    On the practical side, their work may result in superfast quantum computers. While ordinary computers store information in bits which take on either the value 0 or the value 1, a quantum computer would exploit the phenomenon of superposition to allow a quantum bit to take on both values at once. If a single quantum bit can simultaneously take on two values, then two of them can simultaneously take on four values, three can simultaneously take on eight values, and so on. In general, n quantum bits can simultaneously take on 2n values. It's this increased capacity to represent information that may one day lead to computers much faster than anything around today. Wineland and his team were the first to show that a quantum operation involving two quantum bits is possible, thus paving the way towards the superfast computers of the future.

    Wineland has also used his lab techniques to build a clock that's 100 times more accurate than the clocks currently setting our time standards. Time can be defined in terms of the frequencies of electromagnetic radiation emitted by atoms. Wineland's clock measures radiation that's within the visible light range of the spectrum, and it's therefore called an optical clock. Optical clocks are incredibly accurate: if you had set one running at the moment of the Big Bang, it would now only be out by about five seconds.

    According to Royal Swedish Academy of Sciences, who awards the Nobel Prizes, Haroche and Wineland have "opened the door to a new era of experimentation with quantum mechanics". Their methods for probing the physical world at the smallest scales may one day help lift the veil on some of the biggest mysteries in physics.

    You can find out more in this excellent write-up on the Nobel Prize website and read more about quantum mechanics on Plus.

    Read more about...
    quantum mechanics
    quantum superposition
    quantum computing
    quantum entanglement
    Nobel prize
    quantum physics
    • Log in or register to post comments

    Read more about...

    quantum mechanics
    quantum superposition
    quantum computing
    quantum entanglement
    Nobel prize
    quantum physics
    University of Cambridge logo

    Plus is part of the family of activities in the Millennium Mathematics Project.
    Copyright © 1997 - 2025. University of Cambridge. All rights reserved.

    Terms