evolution

Foraging ants have a hard life, embarking on long and arduous trips several times a day, until they drop dead from exhaustion. The trips are not just long, they also follow complex zig-zag paths. So how do ants manage to find their way back home? And how do they manage to do so along a straight line? Their secret lies in a little geometry.
The human brain faces a difficult trade-off. On the one hand it needs to be complex to ensure high performance, and on the other it needs to minimise "wiring cost" — the sum of the length of all the connections — because communication over distance takes a lot of energy. It's a problem well-known to computer scientists. And it seems that market driven human invention and natural selection have come up with similar solutions.
It is thought that the next great advances in biology and medicine will be discovered with mathematics. As biology stands on the brink of becoming a theoretical science, Thomas Fink asks if there is more to this collaboration than maths acting as biology's newest microscope. Will theoretical biology lead to new and exciting maths, just as theoretical physics did in the last two centuries? And is there a mathematically elegant story behind life?

Genes normally evolve by tiny mutations, but every now and then something more radical occurs and entire genes along a chromosome get flipped. Understanding gene flipping boils down to solving a problem from pure maths. Colva Roney-Dougal and Vincent Vatter explain, taking us on a journey from waiters sorting pancakes, via one of the richest men in the world, to the genetic similarities of mice and humans.

We have all become more aware of the dangers of influenza this year, but why is it so dangerous? Julia Gog explains that the unusual structure of the influenza genome can lead to dangerous evolutionary jumps, and how mathematics is helping to understand how the virus replicates.
New insights into gene permutations
We live in a world full of information and it's a statistician's job to make sense of it. In this article Dianne Cook explores ways of analysing data and shows how they can be applied to anything from investigating diners' tipping behaviour to understanding climate change and genetics.
Game theorists model the evolution of trust and trustworthiness
Loquacious maths
Food evolution
Modelling terrorist activity
Mathematics tackles an eternal question