Articles

This is the third article in our four-part series exploring quantum electrodynamics. After struggling with a theory plagued by unwieldy infinities an ingenious trick put QED back on track.

In February this year we were lucky enough to interview Freeman Dyson at the Institute for Advanced Studies in Princeton, USA. Dyson is now 89 and still does physics every day in his first floor office at the Institute. Here is an edited version of our interview that we hope conveys his generous nature, wit and intellect.

This is the last article in a four-part series exploring quantum electrodynamics. After a breakthrough that tamed QED in theory, the stick-like drawings known as Feynman diagrams, policed by a young Freeman Dyson, made the theory useable.

You may have heard of quantum theory and you probably know what a field is. But what is quantum field theory? This article traces the development of quantum electrodynamics in the first half of the 20th century. Hair raising difficulties, heroic struggle and illustrious characters — this story has it all!

Are number, space and time features of the outside world or a result of the brain circuitry we have developed to live in it? Some interesting parallels between modern neuroscience and the mathematics of 19th century mathematician Bernard Riemann.

Remember how hard it was to fold maps? Mathematicians have struggled with map folding problems for ages but a recent insight suggests there might be another way to approach them, making an unlikely connection between combinatorics, origami and engineering.

To understand how spacetime might have emerged in the early cosmos we need to heat up the equations, and thaw the space and time dimensions.

Cutting the threads of the spacetime fabric and reinstating the aether could lead to a theory of quantum gravity.