Skip to main content
Home
plus.maths.org

Secondary menu

  • My list
  • About Plus
  • Sponsors
  • Subscribe
  • Contact Us
  • Log in
  • Main navigation

  • Home
  • Articles
  • Collections
  • Podcasts
  • Maths in a minute
  • Puzzles
  • Videos
  • Topics and tags
  • For

    • cat icon
      Curiosity
    • newspaper icon
      Media
    • graduation icon
      Education
    • briefcase icon
      Policy

    Popular topics and tags

    Shapes

    • Geometry
    • Vectors and matrices
    • Topology
    • Networks and graph theory
    • Fractals

    Numbers

    • Number theory
    • Arithmetic
    • Prime numbers
    • Fermat's last theorem
    • Cryptography

    Computing and information

    • Quantum computing
    • Complexity
    • Information theory
    • Artificial intelligence and machine learning
    • Algorithm

    Data and probability

    • Statistics
    • Probability and uncertainty
    • Randomness

    Abstract structures

    • Symmetry
    • Algebra and group theory
    • Vectors and matrices

    Physics

    • Fluid dynamics
    • Quantum physics
    • General relativity, gravity and black holes
    • Entropy and thermodynamics
    • String theory and quantum gravity

    Arts, humanities and sport

    • History and philosophy of mathematics
    • Art and Music
    • Language
    • Sport

    Logic, proof and strategy

    • Logic
    • Proof
    • Game theory

    Calculus and analysis

    • Differential equations
    • Calculus

    Towards applications

    • Mathematical modelling
    • Dynamical systems and Chaos

    Applications

    • Medicine and health
    • Epidemiology
    • Biology
    • Economics and finance
    • Engineering and architecture
    • Weather forecasting
    • Climate change

    Understanding of mathematics

    • Public understanding of mathematics
    • Education

    Get your maths quickly

    • Maths in a minute

    Main menu

  • Home
  • Articles
  • Collections
  • Podcasts
  • Maths in a minute
  • Puzzles
  • Videos
  • Topics and tags
  • Audiences

    • cat icon
      Curiosity
    • newspaper icon
      Media
    • graduation icon
      Education
    • briefcase icon
      Policy

    Secondary menu

  • My list
  • About Plus
  • Sponsors
  • Subscribe
  • Contact Us
  • Log in
  • Chaos from order

    by
    Marianne Freiberger
    16 February, 2016

    Weather forecasters have it hard, especially in England where the weather is such a hot topic. Whenever they get it wrong, we deem them incompetent. How come that in the age of space travel we still can't get a decent weather forecast?

    Rain

    English weather is hard to predict.

    The answer is that the weather really is very hard to predict. That's not because we don't know how it works — we do. We understand the laws of nature that govern all the factors that make the weather, and, as physicists like to boast, these laws can be beautifully simple. But this doesn't mean that the outcomes of the laws, the weather we actually see, can't still be very complex. "[Meteorology] is the study of 'happenings', if you like," explains John Barrow, mathematician and cosmologist at the University of Cambridge (you can watch our interview with him below). "It's quite different from studying the laws that govern the happenings."

    The idea that even simple rules can give rise to unpredictable behaviour wasn't fully appreciated until the late 1970s, with the advent of personal computers. "There were computers before of course, but they were incredibly expensive, and they were the domain of large research groups, doing blockbusting problems like exploding stars, modelling the economy, or bombs," explains Barrow. With personal computers mathematicians could for the first time study complicated problems, which you can't analyse with pencil and paper. "You can't solve these problems in 30 minutes, under examination conditions, so they don't get studied at school," says Barrow. "At the end of the 1970s and in the 1980s you saw the beginning of the study of complexity, the study of chaos."

    We've all got our own ideas of what chaos is, but in mathematics the word has a precise meaning. Imagine you are trying to predict the path a ball on a billiard table will take in response to a push. The rules at play simple: the ball's acceleration is equal to the force applied divided by its mass (that's Newton's second law of motion) and when it hits a side, the angle of reflection is equal to the angle of incidence (strictly speaking you also need to include the effect of friction, but that's not too hard to do).

    The trouble is that in your average pub setting you can't easily measure the exact amount of force applied to the ball, the exact angle with which it hits a side, and so on. As you make your calculations, this small initial uncertainty can snowball, so that pretty soon your prediction may become so uncertain as to be useless. That "sensitivity to ignorance", as Barrow calls it, is the hallmark of mathematical chaos. It's also known as the butterfly effect: the idea that the small air disturbance caused by a butterfly's beating wing can develop into a tornado half way around the world.

    "The weather is also [chaotic]," explains Barrow. "It's not that we don't understand the weather and all the bits of physics that go into it. We do, and we have very good equations to actually predict how the weather will change. But we don't know the state of the weather now, in every position, with perfect accuracy. We might have weather stations every 50 or 100 miles, but the scope for little variations in-between is great enough that when you run your computer simulation, if you interpolate a little bit differently between the weather stations, you can end up getting a very different forecast for tomorrow and certainly for next week."

    Order in chaos

    At this point you may raise an interesting question. If the weather is so hard to predict in the short term, how come we can all make reasonably accurate longer-term predictions? We all know that, in the UK, the winter will be colder than the summer, and that autumn and spring are likely to be windier.

    Storm

    This is Hurricane Isabel, which devastated parts of the US in 2003, as seen from the International Space Station. Forecasters saw this one coming, but in general the weather is very difficult to predict.

    The point is that, when we say that the summer is warmer than the winter, we are not talking about individual day-to-day fluctuations in temperature, but about the average temperature measured over time and over a whole region. Averages can show a predictable pattern, even if the numbers that make them up vary unpredictably.

    A more astonishing example comes from the air molecules in your room. The motion of an individual one is completely unpredictable, not only because of sensitivity to ignorance, but also because there is genuine randomness involved. Yet, you don't notice this crazy motion. You can even come up with things like Boyle's law, which says that the pressure of a gas, times the volume it is contained in, divided by its temperature is always the same: it's a constant, despite the fact that individual molecules are moving randomly. Pressure and temperature are again average quantities: the temperature is the average speed of the molecules, and the pressure is the average force on a unit of area of the container's walls. "It's possible that, even though the individual molecular motions are chaotic, the average behaviour is entirely predictable and changes very slowly," says Barrow.

    There are many processes that, like the weather, exhibit chaos, but not all these processes are stable in the sense that average behaviour is predictable. It's obviously useful to know which ones are. "At the moment there are a few processes we are particularly interested in," says Barrow. "One is the long-term evolution of climate. The other, over shorter timescales, is the evolution of an economy." The question is whether these are locked in a long-term stable pattern or whether they are going to spin out of control.

    Chaos is one way in which complex outcomes can arise from simple laws. "If someone comes along and asks me, as they often have, 'Is the world simple or is it complicated?', I think the interesting answer is, if you look at the world at the level of the laws of nature, it's simple," says Barrow. "But for people for study the outcomes of the laws, the world is complicated."

    Watch John D. Barrow talk about chaos. (This is a clip from a longer interview which you can watch here.)


    Further reading

    To find out more about how the laws of nature relate to their outcomes see Stuff happens: Laws versus outcomes.


    About this article

    FQXi logo

    This article is part of our Stuff happens: the physics of events project, run in collaboration with FQXi. Click here to see more articles and videos about the laws of nature and their outcomes.

    Marianne Freiberger is Editor of Plus. She interviewed John D. Barrow in December 2015.

    • Log in or register to post comments

    Read more about...

    chaos
    law of nature
    Stuff happens
    University of Cambridge

    Our Podcast: Maths on the Move

    Our Maths on the Move podcast brings you the latest news from the world of maths, plus interviews and discussions with leading mathematicians and scientists about the maths that is changing our lives.

    Apple Podcasts
    Spotify
    Podbean

    Plus delivered to you

    Keep up to date with Plus by subscribing to our newsletter or following Plus on X or Bluesky.

    University of Cambridge logo

    Plus is part of the family of activities in the Millennium Mathematics Project.
    Copyright © 1997 - 2025. University of Cambridge. All rights reserved.

    Terms