Skip to main content
Home
plus.maths.org

Secondary menu

  • My list
  • About Plus
  • Sponsors
  • Subscribe
  • Contact Us
  • Log in
  • Main navigation

  • Home
  • Articles
  • Collections
  • Podcasts
  • Maths in a minute
  • Puzzles
  • Videos
  • Topics and tags
  • For

    • cat icon
      Curiosity
    • newspaper icon
      Media
    • graduation icon
      Education
    • briefcase icon
      Policy

    Popular topics and tags

    Shapes

    • Geometry
    • Vectors and matrices
    • Topology
    • Networks and graph theory
    • Fractals

    Numbers

    • Number theory
    • Arithmetic
    • Prime numbers
    • Fermat's last theorem
    • Cryptography

    Computing and information

    • Quantum computing
    • Complexity
    • Information theory
    • Artificial intelligence and machine learning
    • Algorithm

    Data and probability

    • Statistics
    • Probability and uncertainty
    • Randomness

    Abstract structures

    • Symmetry
    • Algebra and group theory
    • Vectors and matrices

    Physics

    • Fluid dynamics
    • Quantum physics
    • General relativity, gravity and black holes
    • Entropy and thermodynamics
    • String theory and quantum gravity

    Arts, humanities and sport

    • History and philosophy of mathematics
    • Art and Music
    • Language
    • Sport

    Logic, proof and strategy

    • Logic
    • Proof
    • Game theory

    Calculus and analysis

    • Differential equations
    • Calculus

    Towards applications

    • Mathematical modelling
    • Dynamical systems and Chaos

    Applications

    • Medicine and health
    • Epidemiology
    • Biology
    • Economics and finance
    • Engineering and architecture
    • Weather forecasting
    • Climate change

    Understanding of mathematics

    • Public understanding of mathematics
    • Education

    Get your maths quickly

    • Maths in a minute

    Main menu

  • Home
  • Articles
  • Collections
  • Podcasts
  • Maths in a minute
  • Puzzles
  • Videos
  • Topics and tags
  • Audiences

    • cat icon
      Curiosity
    • newspaper icon
      Media
    • graduation icon
      Education
    • briefcase icon
      Policy

    Secondary menu

  • My list
  • About Plus
  • Sponsors
  • Subscribe
  • Contact Us
  • Log in
  • Friends and strangers

    by
    Imre Leader
    27 March, 2014
    6 comments

    Can we always find order in systems that are disordered? If so, just how large does a system have to be to contain a certain amount of order?

    Let's consider a concrete example. Suppose there is a room with six people in it. We are interested in whether people in this room know each other or not. Let's call two people friends if they know each other, strangers if they don't.

    Clearly the most orderly case would be if the six are either all friends, or all strangers. Unfortunately the people have been chosen at random, so there will probably be a jumble of friends and strangers in the room. Suppose we draw lines joining every pair of people in the room and colour them blue if the two are friends, red if they are strangers. Then the result might look something like this:

    friends network

    This graph looks pretty chaotic. But we can ask: can we at least find three people in the room who are either all friends (a blue triangle) or all strangers (a red triangle)? In this case the answer is "yes". But what if the original graph had been different? Would we always have been able to find an orderly set of three people?

    The answer is yes and one way of proving it would be to list all possible colourings, and check each one in turn. Unfortunately there are over 30,000 of those, so this proof would be more than a little tedious. But there is an easier method. First choose any point in your graph, and note that five lines come out of it - one to each of the other five points:

    friends network

    With five lines there must be at least three of one colour. Let's suppose there are three red lines. So we have four points like this:

    friends network

    What colours are the three remaining lines? If even one of them is red, then it makes a red triangle together with point A (left). And if not, the three together make a blue triangle (right):

    [IMAGE: 3 red edges]
    friends network

    We've proved that with six points (or more, of course), there must be three friends or three strangers. This suggests the question, "How many people do we need, to be sure of finding either three friends, or three strangers?" This is our first example of a Ramsey number, and is written as R(3,3). It is named after the mathematician Frank Ramsey who was working in the 1920s. We've seen that six people is certainly enough; in other words, R(3,3) isn't any larger than 6. But would five points have been enough? The graph below with five points shows that the answer is no:

    friends network

    So we have proved that R(3,3)=6. With a bit of work you can show that R(4,4)=18. What about R(a,b) for general values of a and b? Can we be sure it even exists? Perhaps no number of people is enough to guarantee a friends and b strangers. But luckily we can be sure — this result is known as Ramsey's theorem. It tells us that however much orderliness we want, we can find it as long as the graph we are given is big enough.

    So what is the value of R(5,5)? The answer is: nobody knows! Very few Ramsey numbers R(a,b) are actually known (with a and b both bigger than 2). The most we can say about R(5,5) with our present knowledge is that it is somewhere between 42 and 49.

    How can it be so difficult to get an accurate value? Arguments involve finding upper bounds — for example, we saw quite easily that R(3,3) could not be bigger than 6. But to show that it could not be as small as 5, we had to construct a graph with 5 points, as a counterexample. The problem is that we are looking for examples of order, so the best counterexamples will usually have lots of disorder — they will look random. This makes it hard or impossible to find a "rule" that gives good counterexamples. Anything constructed by rule will probably have too much order in it.

    Also, our upper bounds may be too high, but how will we ever prove it? Perhaps by examining all possible graphs on a computer to show that one has the right number of friends or strangers? The problem with this approach is that numbers explode rapidly. To show that R(5,5) is at most 49 we would have to look at 21176 possible colourings of a graph. This number is far, far bigger than the number of particles in the known Universe. So there is no chance of even the fastest computer imaginable ever finishing such a search. This is a puzzle we may never know the answer to.

    This is an edited version Imre Leader's article Friends and strangers. You can read the full article here.

    • Log in or register to post comments

    Comments

    reuell

    3 April 2014

    Permalink

    Do you mean 2 ^ 1431 in the last paragraph? In Friends and Strangers, it says 2 ^ 1431 is the number of possible colourings.

    • Log in or register to post comments

    Rachel

    2 May 2014

    In reply to Error by reuell

    Permalink
    • Log in or register to post comments

    Anonymous

    30 April 2014

    Permalink

    How can there be only 21176 particles in the known universe?
    Am I missing something here?

    • Log in or register to post comments

    Rachel

    2 May 2014

    In reply to Particles by Anonymous

    Permalink
    • Log in or register to post comments

    Anonymous

    28 October 2014

    Permalink

    In the article "What colours are the three remaining lines?", the images below are identical!!

    • Log in or register to post comments

    Marianne

    29 October 2014

    In reply to The three remaining lines by Anonymous

    Permalink

    Thanks for pointing that out, we've fixed the mistake.

    • Log in or register to post comments

    Read more about...

    Ramsey theory
    graph theory
    combinatorics
    creativity

    Our Podcast: Maths on the Move

    Our Maths on the Move podcast brings you the latest news from the world of maths, plus interviews and discussions with leading mathematicians and scientists about the maths that is changing our lives.

    Apple Podcasts
    Spotify
    Podbean

    Plus delivered to you

    Keep up to date with Plus by subscribing to our newsletter or following Plus on X or Bluesky.

    University of Cambridge logo

    Plus is part of the family of activities in the Millennium Mathematics Project.
    Copyright © 1997 - 2025. University of Cambridge. All rights reserved.

    Terms