Skip to main content
Home
plus.maths.org

Secondary menu

  • My list
  • About Plus
  • Sponsors
  • Subscribe
  • Contact Us
  • Log in
  • Main navigation

  • Home
  • Articles
  • Collections
  • Podcasts
  • Maths in a minute
  • Puzzles
  • Videos
  • Topics and tags
  • For

    • cat icon
      Curiosity
    • newspaper icon
      Media
    • graduation icon
      Education
    • briefcase icon
      Policy

    Popular topics and tags

    Shapes

    • Geometry
    • Vectors and matrices
    • Topology
    • Networks and graph theory
    • Fractals

    Numbers

    • Number theory
    • Arithmetic
    • Prime numbers
    • Fermat's last theorem
    • Cryptography

    Computing and information

    • Quantum computing
    • Complexity
    • Information theory
    • Artificial intelligence and machine learning
    • Algorithm

    Data and probability

    • Statistics
    • Probability and uncertainty
    • Randomness

    Abstract structures

    • Symmetry
    • Algebra and group theory
    • Vectors and matrices

    Physics

    • Fluid dynamics
    • Quantum physics
    • General relativity, gravity and black holes
    • Entropy and thermodynamics
    • String theory and quantum gravity

    Arts, humanities and sport

    • History and philosophy of mathematics
    • Art and Music
    • Language
    • Sport

    Logic, proof and strategy

    • Logic
    • Proof
    • Game theory

    Calculus and analysis

    • Differential equations
    • Calculus

    Towards applications

    • Mathematical modelling
    • Dynamical systems and Chaos

    Applications

    • Medicine and health
    • Epidemiology
    • Biology
    • Economics and finance
    • Engineering and architecture
    • Weather forecasting
    • Climate change

    Understanding of mathematics

    • Public understanding of mathematics
    • Education

    Get your maths quickly

    • Maths in a minute

    Main menu

  • Home
  • Articles
  • Collections
  • Podcasts
  • Maths in a minute
  • Puzzles
  • Videos
  • Topics and tags
  • Audiences

    • cat icon
      Curiosity
    • newspaper icon
      Media
    • graduation icon
      Education
    • briefcase icon
      Policy

    Secondary menu

  • My list
  • About Plus
  • Sponsors
  • Subscribe
  • Contact Us
  • Log in
  • Cosmology breakthrough raises new questions

    20 March, 2014

    Yesterday cosmologists at the University of Cambridge delivered their verdict on a major breakthrough that rocked science this week: the announcement of the BICEP2 project of direct evidence for an inflationary theory of the Universe and the existence of gravity waves (see here for our report). Having caught their breath, the Cambridge scientists carefully studied the results published by BICEP2 and presented their thoughts to a packed lecture theatre at the Institute of Astronomy.

    The verdict was positive. "I don't see anything particularly fishy," said cosmologist Anthony Challinor. "There are niggles and there will always be with these kinds of data sets. But it all looks ok to me."

    Planck CMB all sky map

    The all sky map of the temperature fluctuations in the CMB, as seen by Planck. (Image credit ESA and the Planck Collaboration)

    That's good news for the BICEP2 project, but there may be even more exciting news for cosmology as a whole. Challinor and George Efstathiou, his co-presenter at yesterday's talk, both work on the Planck mission, which uses a space based telescope to map the cosmic microwave background (find out more here). The trouble is that there's tension between Planck's results and those of BICEP2. Planck data concerning temperature fluctuations in the early Universe seem to suggest that there aren't any gravitational waves at all. BICEP2 data, looking at polarisation of light, suggest that there are. So if BICEP's conclusions are correct, physicists may need to look for new physics to explain the discrepancy. The detection of gravity waves is intimately linked to the idea that the Universe experienced a rapid period of accelerated expansion, called inflation, in the distant past, so it's inflationary theories that will come under scrutiny.

    "The BICEP2 results have been an absolute triumph for the theory of inflation," says Challinor. "But the problem now is that the simplest models of inflation don't actually seem to fit. It's almost like we know less about inflation than we did before. What we need now is independent confirmation [of the results] from another experiment. If we see that, then it could well mean that we need new physics [to explain the results]." It looks like cosmology is heading for exciting times!

    Read more about...
    cosmology
    gravitational wave
    cosmological inflation
    theory of inflation
    • Log in or register to post comments

    Read more about...

    cosmology
    gravitational wave
    cosmological inflation
    theory of inflation
    University of Cambridge logo

    Plus is part of the family of activities in the Millennium Mathematics Project.
    Copyright © 1997 - 2025. University of Cambridge. All rights reserved.

    Terms