Article

The logic of drug testing

London 2012 vowed to be the cleanest Olympics ever, with more than 6,000 tests on athletes for performance enhancing drugs. But when an athlete does fail a drug test can we really conclude that they are cheating? John Haigh does the maths.
Article
icon

Schrödinger's equation — in action

In the previous article we introduced Schrödinger's equation and its solution, the wave function, which contains all the information there is to know about a quantum system. Now it's time to see the equation in action, using a very simple physical system as an example. We'll also look at another weird phenomenon called quantum tunneling.

Article
icon

Schrödinger's equation — what is it?

In the 1920s the Austrian physicist Erwin Schrödinger came up with what has become the central equation of quantum mechanics. It tells you all there is to know about a quantum physical system and it also predicts famous quantum weirdnesses such as superposition and quantum entanglement. In this, the first article of a three-part series, we introduce Schrödinger's equation and put it in its historical context.

Article

Mapping the medals

Predicting the final Olympic medal count is a black art. Sport, with all its intricacies and vagaries, is always susceptible to variations in form, weather conditions and simple random events. But we like a challenge! So without further ado, here is our predicted 2012 London Olympic medal count.
Article
Detail of M-theory multiple, Grenville Davey. Image © Isaac Newton Institute

String Theory, Duality and Art: how the Higgs boson and Turner Prize collide

On the face of it, an artist and a theoretical physicist might seem an unlikely pairing. But Turner Prize-winning sculptor Grenville Davey and string theorist David Berman's collaboration is producing beautiful, thought-provoking work inspired by the fundamental structure of the Universe. Julia Hawkins interviewed them to find out more about how the Higgs boson and T-duality are giving rise to art.
Article

Building bridges from mathematics to the City

Many people's impression of mathematics is that it is an ancient edifice built on centuries of research. However, modern quantitative finance, an area of mathematics with such a great impact on all our lives, is just a few decades old. The Isaac Newton Institute quickly recognised its importance and has already run two seminal programmes, in 1995 and 2005, supporting research in the field of mathematical finance.

Article

Strings, particles and the early Universe

The Strong Fields, Integrability and Strings programme, which took place at the Isaac Newton Institute in 2007, explored an area that would have been close to Isaac Newton's heart: how to unify Einstein's theory of gravity, a continuation of Newton's own work on gravitation, with quantum field theory, which describes the atomic and sub-atomic world, but cannot account for the force of gravity.
Collection

The Isaac Newton Institute: Creating eureka moments

The Isaac Newton Institute celebrates its 20th birthday this year, having opened in July 1992. To join in the celebrations we bring you a selection of articles exploring some of the research programmes that have been held there. The Institute asked us to produce these articles in 2010 and we were honoured by being afforded this rare glimpse behind its venerable doors. And as you'll see, what started out as abstract mathematics scribbled on the back of a napkin can have major impact in the real world.
Article

Taming water waves

Few things in nature are as dramatic, and potentially dangerous, as ocean waves. The impact they have on our daily lives extends from shipping to the role they play in driving the global climate. From a theoretical viewpoint water waves pose rich challenges: solutions to the equations that describe fluid motion are elusive, and whether they even exist in the most general case is one of the hardest unanswered questions in mathematics.
Article
icon

Renewable energy and telecommunications

When the mathematician AK Erlang first used probability theory to model telephone networks in the early twentieth century he could hardly have imagined that the science he founded would one day help solve a most pressing global problem: how to wean ourselves off fossil fuels and switch to renewable energy sources.