Skip to main content
Home
plus.maths.org

Secondary menu

  • My list
  • About Plus
  • Sponsors
  • Subscribe
  • Contact Us
  • Log in
  • Main navigation

  • Home
  • Articles
  • Collections
  • Podcasts
  • Maths in a minute
  • Puzzles
  • Videos
  • Topics and tags
  • For

    • cat icon
      Curiosity
    • newspaper icon
      Media
    • graduation icon
      Education
    • briefcase icon
      Policy

    Popular topics and tags

    Shapes

    • Geometry
    • Vectors and matrices
    • Topology
    • Networks and graph theory
    • Fractals

    Numbers

    • Number theory
    • Arithmetic
    • Prime numbers
    • Fermat's last theorem
    • Cryptography

    Computing and information

    • Quantum computing
    • Complexity
    • Information theory
    • Artificial intelligence and machine learning
    • Algorithm

    Data and probability

    • Statistics
    • Probability and uncertainty
    • Randomness

    Abstract structures

    • Symmetry
    • Algebra and group theory
    • Vectors and matrices

    Physics

    • Fluid dynamics
    • Quantum physics
    • General relativity, gravity and black holes
    • Entropy and thermodynamics
    • String theory and quantum gravity

    Arts, humanities and sport

    • History and philosophy of mathematics
    • Art and Music
    • Language
    • Sport

    Logic, proof and strategy

    • Logic
    • Proof
    • Game theory

    Calculus and analysis

    • Differential equations
    • Calculus

    Towards applications

    • Mathematical modelling
    • Dynamical systems and Chaos

    Applications

    • Medicine and health
    • Epidemiology
    • Biology
    • Economics and finance
    • Engineering and architecture
    • Weather forecasting
    • Climate change

    Understanding of mathematics

    • Public understanding of mathematics
    • Education

    Get your maths quickly

    • Maths in a minute

    Main menu

  • Home
  • Articles
  • Collections
  • Podcasts
  • Maths in a minute
  • Puzzles
  • Videos
  • Topics and tags
  • Audiences

    • cat icon
      Curiosity
    • newspaper icon
      Media
    • graduation icon
      Education
    • briefcase icon
      Policy

    Secondary menu

  • My list
  • About Plus
  • Sponsors
  • Subscribe
  • Contact Us
  • Log in
  • Maths in a minute: The positive predictive value

    10 June, 2021
    1 comments

    As we all know by now, tests used for medical diagnoses aren't 100% accurate. When you receive a positive test result for a particular disease, there is still a chance that you haven't actually got it, in other words, that you are a false positive.

    The probability that you do actually have the disease when you receive a positive test result is called the positive predictive value of the particular test in question. The higher the positive predictive value, the higher the chance you actually have the disease.

    The positive predictive value of a test obviously depends on how accurate the test is. But interestingly, it also depends on how many people in the population have the disease in question. The more widespread the disease (the higher its prevalence) the higher the positive predictive value.

    To illustrate this, imagine that a given test correctly identifies 80% of people who have the disease and that it correctly identifies 99.9% of people who don't have it. (We assume that the test always gives positive or negative as an answer, so there are no inconclusive test results.) Also imagine that 2% of the population have the disease the test was designed for.

    If the population consists of 100,000 people, then this means that 2,000 people have the disease and 98,000 don't have it. If everyone were to be tested, then out of the 2,000 who have the disease, 80% would correctly receive a positive test result, so that's 1,600 people. The remaining 400 would be false negatives.

    Out of the 98,000 people who don't have the disease, 99.9% would correctly get a negative test result, so that's 97,902 people. The remaining 98 people would be false positives.

    A tree diagram

    This diagram was adapted from one that appeared in a Plus article article by Mike Pearson and Ian Short.

    This means that a total of

    1600+98=1698

    people receive a positive test result. For a proportion of

    1600/1698=0.94

    the test result is correct. Therefore, the chance that a person who tested positive actually has the disease is 0.94, which translates to 94%.

    Now still imagine that a given test correctly identifies 80% of people who have the disease and that it correctly identifies 99.9% of people who don't have it. But now let's assume that only 0.2% of the population have the disease the test was designed for. If the population consists of 100,000 people, then this means that 200 people have the disease and 99,800 don't have it. Out of the 200 who have the disease, 80% correctly receive a positive test result, so that's 160 people. The remaining 40 are false negatives.

    Out of the 99,800 people who don't have the disease, 99.9% correctly get a negative test result, so that's 99,700.2 people. We will round that to the nearest integer, giving 99,700 people. The remaining 100 people are false positives.

    A tree diagram

    This diagram was adapted from one that appeared in a Plus article article by Mike Pearson and Ian Short. People are rounded to the nearest integer.

    This means that a total of

    160+100=260

    people receive a positive test result. For a proportion of

    160/260=0.61

    the test result is correct. Therefore, the chance that a person who tested positive actually has the disease is 0.61, which translates to 61%.

    So, to summarise, for a prevalence of 2% the positive predictive value in this example is 94%, but for a lower prevalence of 0.2% the positive predictive value is only 61%. This illustrates that the higher the prevalence of a disease, the higher the chance that a positive test result means you actually have the disease.

    There is also something called the negative predictive value: that's the chance that someone who has received a negative test result really does not have the disease. For a given test, this value also depends on the prevalence of the disease in the population, but this time the other way around. The higher the prevalence, the lower the negative predictive value. We leave it as an exercise for you to check this is true.

    You might also want to read Maths in a minute: False positives and Visualising probabilities.


    About this article

    This article was produced as part of our collaboration with JUNIPER, the Joint UNIversity Pandemic and Epidemic Response modelling consortium. JUNIPER comprises academics from the universities of Cambridge, Warwick, Bristol, Exeter, Oxford, Manchester, and Lancaster, who are using a range of mathematical and statistical techniques to address pressing question about the control of COVID-19. You can see more content produced with JUNIPER here.

    Juniper logo

    • Log in or register to post comments

    Comments

    vonjd

    23 June 2021

    Permalink

    For another helpful post on this topic please see https://blog.ephorie.de/covid-19-false-positive-alarm.

    • Log in or register to post comments

    Read more about...

    Juniper
    medicine and health
    false positive
    Maths in a minute

    Our Podcast: Maths on the Move

    Our Maths on the Move podcast brings you the latest news from the world of maths, plus interviews and discussions with leading mathematicians and scientists about the maths that is changing our lives.

    Apple Podcasts
    Spotify
    Podbean

    Plus delivered to you

    Keep up to date with Plus by subscribing to our newsletter or following Plus on X or Bluesky.

    University of Cambridge logo

    Plus is part of the family of activities in the Millennium Mathematics Project.
    Copyright © 1997 - 2025. University of Cambridge. All rights reserved.

    Terms