Skip to main content
Home
plus.maths.org

Secondary menu

  • My list
  • About Plus
  • Sponsors
  • Subscribe
  • Contact Us
  • Log in
  • Main navigation

  • Home
  • Articles
  • Collections
  • Podcasts
  • Maths in a minute
  • Puzzles
  • Videos
  • Topics and tags
  • For

    • cat icon
      Curiosity
    • newspaper icon
      Media
    • graduation icon
      Education
    • briefcase icon
      Policy

      Popular topics and tags

      Shapes

      • Geometry
      • Vectors and matrices
      • Topology
      • Networks and graph theory
      • Fractals

      Numbers

      • Number theory
      • Arithmetic
      • Prime numbers
      • Fermat's last theorem
      • Cryptography

      Computing and information

      • Quantum computing
      • Complexity
      • Information theory
      • Artificial intelligence and machine learning
      • Algorithm

      Data and probability

      • Statistics
      • Probability and uncertainty
      • Randomness

      Abstract structures

      • Symmetry
      • Algebra and group theory
      • Vectors and matrices

      Physics

      • Fluid dynamics
      • Quantum physics
      • General relativity, gravity and black holes
      • Entropy and thermodynamics
      • String theory and quantum gravity

      Arts, humanities and sport

      • History and philosophy of mathematics
      • Art and Music
      • Language
      • Sport

      Logic, proof and strategy

      • Logic
      • Proof
      • Game theory

      Calculus and analysis

      • Differential equations
      • Calculus

      Towards applications

      • Mathematical modelling
      • Dynamical systems and Chaos

      Applications

      • Medicine and health
      • Epidemiology
      • Biology
      • Economics and finance
      • Engineering and architecture
      • Weather forecasting
      • Climate change

      Understanding of mathematics

      • Public understanding of mathematics
      • Education

      Get your maths quickly

      • Maths in a minute

      Main menu

    • Home
    • Articles
    • Collections
    • Podcasts
    • Maths in a minute
    • Puzzles
    • Videos
    • Topics and tags
    • Audiences

      • cat icon
        Curiosity
      • newspaper icon
        Media
      • graduation icon
        Education
      • briefcase icon
        Policy

      Secondary menu

    • My list
    • About Plus
    • Sponsors
    • Subscribe
    • Contact Us
    • Log in
    • Saving whales using Pythagoras

      Chris Budd
      13 March, 2019
      2 comments
      Beluga whale

      A beluga whale. Photo: Premier.gov.ru, CC BY-SA 4.0.

      Whales are under threat from all sides: whaling, the degradation of habitats, toxins in the water, the damaging effects of sonar, and climate change.

      There is also the very real danger of being struck by ships. To avoid whales, shipping crews need to know where they are. This is where Pythagoras' ancient theorem about right-angled triangles comes in: a simple application of the theorem can save whales!

      Pythagoras' theorem

      Pythagoras' theorem says that, given a right-angled triangle labelled as below, the area c2 of the square on the hypotenuse is equal to the sum a2+b2 of the areas of the squares on the other two sides. (See the below for a statement in limerick form.)
      Pythagorean triples

      Pythagoras' theorem. Image: Wapkaplet.

      In other words a2+b2=c2.
      A right-angled triangle opined
      My hypotenuse squared is refined
      For if anyone cares
      It's the sum of the squares
      Of my other two sides when combined

      The theorem is named after the ancient Greek mathematician Pythagoras of Samos, who lived between 569 and 495 BC, although it was already known to the Babylonians before him. For some beautiful visual proofs of the theorem, see this article.

      Finding whales

      One very good way of locating fish and ships is active sonar, which involves sending out sound and listening to the echo. Whales, however, appear to hate the sound signals that are sent out. It confuses them and disrupts their behaviour; they have even been known to beach themselves to avoid the sound.

      The answer is, not to send sound out into the ocean, but to listen for the sounds emitted by the whales themselves — to listen to the whales sing.

      If a whale is swimming near the surface of the ocean a distance L away from the ship, then the time T it takes for a sound from the whale to reach the ship is T=L/C, where C is the speed of sound in seawater, around 1500 metres per second. Our task is to find L. But how?
      Pythagorean triples

      The trick is to listen for two sounds: one that arrives from the whale directly and an echo of the sound from the sea bed. From this difference we will be able to work out the distance L of the whale, but first we need to establish the depth of the ocean in the vicinity of the ship. This can be done using active sonar: send a pulse of sound directly downwards and listen for its echo. Below is a recording of the pulse and its echo, represented by their waveforms. The pulse itself is marked by the blue arrow and its echo by the red arrow.

      In the time D it takes the pulse to travel to the sea floor and back, it travels a distance of 2H where H is the depth of the ocean.
      Pythagorean triples

      This means that D=2HC. Rearranging gives H=CD2. Since we can measure D and know the value of C we now also know the value of H. Now let's go back to Pythagoras' theorem. By listening out for the whale's song we can measure the time difference Δ between the arrival of a pulse of sound coming from the whale directly and a pulse emitted at the same time, but being reflected off the sea floor. This is done by listening to a whole range of echos and exploit the regularity, using statistical techniques.
      Pythagorean triples

      The location of the ship, the location of the whale, and the point at which the whale's sound bounces off the sea floor form a triangle, which can be divided into two right-angles triangles as shown in the diagram below.
      Pythagorean triples

      Applying Pythagoras' theorem to one of these triangles gives S2=H2+L24, so S=H2+L24. The total distance travelled by the sound that bounces off the sea floor is 2S which, as we now know, can be written as 2S=2H2+L24=4H2+L2. The time it takes for the echoing sound to travel from whale to ship is therefore Techo=4H2+L2C. The difference between T, the arrival time of the sound T that arrives directly from the whale, and the sound Techo, the arrival time of the sound that bounces off the sea floor, is Techo−T=Δ=4H2+L2C−LC. We can work out L from this expression by first adding L/C to both sides, so Δ+LC=4H2+L2C, and then squaring both sides to get Δ2+2ΔLC+L2C2=4H2+L2C2. Subtracting L2/C2 from both sides gives Δ2+2ΔLC=4H2C2, so L=2H2ΔC−ΔC2. Since we know both H, Δ, and C, as well as the direction of the whale's singing, we know exactly where the whale is. Changing direction, if necessary, we can save it from being hit.

      Thank you Pythagoras!

      Chris Budd will give a talk about this subject at New Scientist Live in October 2019.


      About the author

      Chris Budd

      Chris Budd.

      Chris Budd OBE is Professor of Applied Mathematics at the University of Bath, Vice President of the Institute of Mathematics and its Applications, Chair of Mathematics for the Royal Institution and an honorary fellow of the British Science Association. He is particularly interested in applying mathematics to the real world and promoting the public understanding of mathematics.

      He has co-written the popular mathematics book Mathematics Galore!, published by Oxford University Press, with C. Sangwin, and features in the book 50 Visions of Mathematics ed. Sam Parc.

      • Log in or register to post comments

      Comments

      Hipassus

      28 May 2019

      Permalink

      (1)

      "One very good way of locating fish and ships is active sonar, which involves sending out sound and listening to the echo. Whales, however, appear to hate the sound signals that are sent out. It confuses them and disrupts their behaviour; they have even been known to beach themselves to avoid the sound.

      The answer is, not to send sound out into the ocean[.]"

      (2)

      "[B]ut first we need to establish the depth of the ocean in the vicinity of the ship. This can be done using active sonar: send a pulse of sound directly downwards and listen for its echo."

      I don't suppose the world will stop sending sound out into the ocean, as suggested in (1) (as much as we might wish) so I appreciate very much the use of mathematics to try and reduce the silencing of whales from one another that we cause.

      However, I wonder if this does not simply mean whales are more likely to get a concentrated blast if they are more directly below us? That is a genuine question. I do not know anything about how sonar propagates in water. Does firing straight down reduce the total area affected by our sonar?

      Thanks for this article and your work to help us humans be a little less awful to other creatures who share the planet with us.

      • Log in or register to post comments

      Chris Budd

      14 August 2019

      In reply to Sonar by Hipassus

      Permalink

      This is a fair comment. However, if you look at not just one reflected wave, but the time that the wave arrives after several reflections, then it is possible to find where the whale is without measuring the depth directly. In fact you find the depth as part of the calculation. I will leave this calculation to the readers of Plus

      • Log in or register to post comments

      Read more about...

      applied mathematics
      geometry
      pythagoras' theorem
      University of Cambridge logo

      Plus Magazine is part of the family of activities in the Millennium Mathematics Project.
      Copyright © 1997 - 2025. University of Cambridge. All rights reserved.

      Terms