Skip to main content
Home
plus.maths.org

Secondary menu

  • My list
  • About Plus
  • Sponsors
  • Subscribe
  • Contact Us
  • Log in
  • Main navigation

  • Home
  • Articles
  • Collections
  • Podcasts
  • Maths in a minute
  • Puzzles
  • Videos
  • Topics and tags
  • For

    • cat icon
      Curiosity
    • newspaper icon
      Media
    • graduation icon
      Education
    • briefcase icon
      Policy

      Popular topics and tags

      Shapes

      • Geometry
      • Vectors and matrices
      • Topology
      • Networks and graph theory
      • Fractals

      Numbers

      • Number theory
      • Arithmetic
      • Prime numbers
      • Fermat's last theorem
      • Cryptography

      Computing and information

      • Quantum computing
      • Complexity
      • Information theory
      • Artificial intelligence and machine learning
      • Algorithm

      Data and probability

      • Statistics
      • Probability and uncertainty
      • Randomness

      Abstract structures

      • Symmetry
      • Algebra and group theory
      • Vectors and matrices

      Physics

      • Fluid dynamics
      • Quantum physics
      • General relativity, gravity and black holes
      • Entropy and thermodynamics
      • String theory and quantum gravity

      Arts, humanities and sport

      • History and philosophy of mathematics
      • Art and Music
      • Language
      • Sport

      Logic, proof and strategy

      • Logic
      • Proof
      • Game theory

      Calculus and analysis

      • Differential equations
      • Calculus

      Towards applications

      • Mathematical modelling
      • Dynamical systems and Chaos

      Applications

      • Medicine and health
      • Epidemiology
      • Biology
      • Economics and finance
      • Engineering and architecture
      • Weather forecasting
      • Climate change

      Understanding of mathematics

      • Public understanding of mathematics
      • Education

      Get your maths quickly

      • Maths in a minute

      Main menu

    • Home
    • Articles
    • Collections
    • Podcasts
    • Maths in a minute
    • Puzzles
    • Videos
    • Topics and tags
    • Audiences

      • cat icon
        Curiosity
      • newspaper icon
        Media
      • graduation icon
        Education
      • briefcase icon
        Policy

      Secondary menu

    • My list
    • About Plus
    • Sponsors
    • Subscribe
    • Contact Us
    • Log in
    • Maths in a minute: The normal distribution

      7 January, 2022
      2 comments

      What's the chance that a random woman you meet on the street is exactly 170cm tall?

      The question seems impossible to answer, but luckily maths can help. It tells us that the heights of people follow a probability distribution known as the normal distribution (also sometimes called a Gaussian distribution) represented by a bell-shaped curve.

      The normal distribution

      The normal distribution with mean 1.647 and standard deviation 7.07. This curve represents the distribution of heights of women based on a large study of twenty countries across North America, Europe, East Asia and Australia. Source: Our world in data

      Here's how to interpret the curve. The top of the curve represents the mean (or average) height, which is 164.7cm. The probability that a random woman is between 165cm and 175cm is given by the area under the bell curve and on top of the interval from 165cm to 175cm, which is 0.17. Similarly, the probability that the height lies in any other range is given by the area under the curve and above that range.

      Mathematically, the curve shown above is the probability density function of the normal distribution (find out more here). It's given mathematically by the formula

      f(x)=1s2πe−12(x−ms)2,

      where m is the mean we already mentioned above and s is the so-called standard deviation, which measures how fat or thin the bell curve is, in other words, how spread out the probabilities are. In our example of heights, the mean is m=164.7cm and the standard deviation is s=7.07cm.

      As the figure above shows, the probability that a woman's height lies within one standard deviation to the left of the mean is 0.34. By the symmetry of the curve, the probability the height lies within one standard deviation to the right of the mean is also 0.34. This means that the probability that a woman's height lies within one standard deviation of the mean no matter what side is 0.68. This is true for all normal distributions, no matter what their mean or standard deviation are: you always know that the chance that your random variable takes a value that's within one standard deviation of the mean is 0.68. (The standard deviation is the square root of the variance, which you can read about here.)

      If, instead of women, we were interested in the height of sausage dogs, we'd also get a normal distribution, but its exact shape would be different (see below for normal distributions of different shapes). The mean would be much smaller, so the entire bell-curve would be less tall. Presumably the heights also wouldn't be as spread out, so the standard deviation would be smaller and therefore the curve would be thinner than it is for humans (this isn't based on real data, we couldn't find any on sausage dogs, but surely there can't be that much variation in their heights).

      How do we know that the heights of people and dogs follow a normal distribution? And how do we know that many, many other things — people's shoe sizes, blood pressure, measurement errors — also follow normal distributions? This is due in part to a mathematical result called the central limit theorem, which says that if you have lots of independent random variables (quantities that can take on a range of values) then as long as certain conditions are met their sum will follow a normal distribution. So if, in nature or the human-made world, something can be thought of as the sum of many independent factors, there's a chance that this something will follow a normal distribution. To see the central limit theorem in action, read this article.

      The figure below shows the normal distribution for various values of the mean and standard deviation.

      Several normal distributions

      The normal distribution for various values of the mean and standard deviation.

      • Log in or register to post comments

      Comments

      Daryl

      8 January 2022

      Permalink

      “What's the chance that a random woman you meet on the street is exactly 170cm tall?”

      Since the area under a point is zero, the answer must be zero. But that can’t be right.

      • Log in or register to post comments

      Marianne

      4 March 2022

      In reply to What’s the answer? by Daryl

      Permalink

      Thanks for the comments: you can read an explanation here? https://plus.maths.org/content/maths-minute-probability-distributions

      • Log in or register to post comments

      Read more about...

      probability
      probability distribution
      normal distribution
      statistics
      Maths in a minute
      statistical distribution
      University of Cambridge logo

      Plus Magazine is part of the family of activities in the Millennium Mathematics Project.
      Copyright © 1997 - 2025. University of Cambridge. All rights reserved.

      Terms