mathematics and art

Mathematics and theatre are both imagined things that need to be consistent. So what better way to explore mathematical ideas than through theatre? We talk to Marcus du Sautoy, Victoria Gould and Dermot Keany about their new show, X&Y.

Why are drug induced hallucinations so compelling that they apparently provided much of the inspiration for early forms of abstract art? Researchers suggest that the answer hinges on an interplay between the mathematics of pattern formation and a mechanism that generates a sense of value and meaning.

Alan Turing was a mathematician and WWII code breaker who was convicted of homosexuality in the 1950s, chemically castrated as a result, died young in mysterious circumstances and still hasn't received all the recognition
he deserves. His life clearly makes great material for a play — but a musical? We talk to the directors and lead actor of The Universal Machine.

On the face of it, an artist and a theoretical physicist might seem an unlikely pairing. But Turner Prize-winning sculptor Grenville Davey and string theorist David Berman's collaboration is producing beautiful, thought-provoking work inspired by the fundamental structure of the Universe. Julia Hawkins interviewed them to find out more about how the Higgs boson and T-duality are giving rise to art.

Imaginary is an interactive mathematics exhibition that inspires the imagination with beautiful images. And what is more exciting it allows anyone to step into the world of maths and play with beautiful mathematical surfaces, symmetry and much more. We went along to the Imaginary Barcelona conference, which brought together people involved in the original exhibition in Germany and its recent successful run throughout Spain.

If, like us, you like fractals, then you will love the work of Frank Milordi, aka FAVIO. Milordi is a former Director of Engineering and Technology who creates mind challenging computer images based on the mathematics of chaos and fractals. You may be familiar with his work already, as one of his beautiful fractal images adorns one of the latest Plus postcards.
The Jerusalem Chords Bridge, Israel, was built to make way for the city's light rail train system. Its design took into consideration more than just utility — it is a work of art, designed as a monument. Its beauty rests not only in the visual appearance of its criss-cross cables, but also in the mathematics that lies behind it. So let's take a deeper look at it.

Dan Brown in his book, The Da Vinci Code, talks about the "divine proportion" as having a "fundamental role in nature". Brown's ideas are not completely without foundation, as the proportion crops up in the mathematics used to describe the formation of natural structures like snail's shells and plants, and even in Alan Turing's work on animal coats. But Dan Brown does not talk about mathematics, he talks about a number. What is so special about this number?

How does a computer understand the colours to be displayed on the monitor's screen? It's all about red, green and blue and numbers written in a special way.

Heather MacKinlay's work as an engineer has taken her from the civility of Surrey to the wild west of Australian mining towns and multibillion pound projects in the Algerian desert. And along the way she has also become a successful painter. Heather tells Plus that engineering and painting are just different ways of looking at the world, and how her work as a cost engineer is all about understanding the big picture.

This article is based on a talk I gave at the recent John Cage exhibition in the Kettles Yard gallery in Cambridge. Cage is perhaps best known for his avant-garde music, particularly his silent 1952 composition 4′33″ but also for his use of randomness in aleatory music. But Cage also used randomness in his art.

Fractals are a treat for your eyes, but what about your ears? Dmitry Kormann, a composer/keyboardist from São Paulo, Brazil, explains how he integrates fractal-like patterns in the very structure of his music, to obtain beautiful results.