mathematics in sport

England's performance in the World Cup last summer was thankfully overshadowed by the attention given to Paul the octopus, who was reported as making an unbroken series of correct predictions of match winners. David Spiegelhalter looks at Paul's performance in an attempt to answer the question that (briefly) gripped the world: was Paul psychic?

This teacher package brings together all our articles that have to do with sport, from cricket to football and from the sport itself to sporting architecture and infrastructure.

In many sports a particular tactical conundrum arises. The team captain has to choose the best order in which to use a group of players or set-plays in the face of unknown counter choices by the opposition. Do you want to field the strongest players first to raise morale or play them last to produce a late run for victory? John D. Barrow shows that randomness holds the answer.

Renowned cosmologist and mathematician John D. Barrow has turned his attention to rowing, with intriguing results. As others did before him, Barrow noticed that the force generated by a rower in a boat has two components: one drives the boat forward and one to the side. Since the sideways motion represents wasted effort, rowers should be positioned in the boat so that it is minimised. So what exactly is the ideal positioning of rowers, the ideal rig?

A new mathematical analysis of team tactics predicts a Spanish win in Sunday's FIFA World Cup final and also sheds some light on why England were trashed by Germany.

On May 22nd 2009 the English Premier league had one more match day ahead, with West Bromwich Albion at the bottom of the league and Manchester United at the top, sure to remain there. Taking up a challenge from a BBC radio programme, David Spiegelhalterand Yin-Lam Ng used their statistical finesse to predict the outcome of the last matches — and they were 90% correct. Find out how they did it.

 

Andy Green, Royal Air force pilot and Oxford maths graduate, is gearing up to break his own land speed record in Bloodhound SSC, a supersonic car designed to reach speeds of up to 1000mph. He tells Plus about the challenges — and the maths — behind this engineering adventure.
In 1997 Andy Green was the first to break the sound barrier in his car Thrust SSC, which reached speeds of over 760mph. Now he and his team want to push things even further with a car called Bloodhound, designed to reach the dizzy heights of 1,000mph, about 1.3 times the speed of sound. Ben Evans explains how maths is used to build this car.
Will the Ashes result depend on the weather?
What it takes to win Wimbledon