aerodynamics
In the first part of this article we let maths set the scene for a free kick. Now we continue the drama, tracing the trajectory of the ball throughout the milliseconds it takes it to reach the goal line.
A new mathematical analysis of how to hit a winning serve shows that spin is the thing. Perhaps there's still time for Murray's coach to include some maths in his preparations for the match today...
Runners and cyclists can tolerate heat and cold but the thing they dislike most is wind. They know it produces slower times. Can we show them why?
What makes a perfect football? Anyone who plays or simply watches the game could quickly list the qualities. The ball must be round, retain its shape, be bouncy but not too lively and, most importantly, be capable of impressive speeds. We find out that this last point is all down to the ball's surface, the most prized research goal in ball design.
Last month leading researchers in sports technology met at the Royal Academy of Engineering in London to demonstrate just how far their field has come over recent years. The changes they make to athletes' equipment and clothes may only make a tiny difference to their performance, but once they're added up they can mean the difference between gold and silver. In this podcast we talk to some leading sport engineers.
Last week leading researchers in sports technology met at the Royal Academy of Engineering in London to demonstrate just how far their field has come over recent years. The changes they make to athletes' equipment and clothes may only make a tiny difference to their performance, but once they're added up they can mean the difference between gold and silver.