List by Author: marianne freiberger

Schrödinger's equation — what does it mean?

In the first article of this series we introduced Schrödinger's equation and in the second we saw it in action using a simple example. But how should we interpret its solution, the wave function? What does it tell us about the physical world?

Schrödinger's equation — in action

In the previous article we introduced Schrödinger's equation and its solution, the wave function, which contains all the information there is to know about a quantum system. Now it's time to see the equation in action, using a very simple physical system as an example. We'll also look at another weird phenomenon called quantum tunneling.

Schrödinger's equation — what is it?In the 1920s the Austrian physicist Erwin Schrödinger came up with what has become the central equation of quantum mechanics. It tells you all there is to know about a quantum physical system and it also predicts famous quantum weirdnesses such as superposition and quantum entanglement. In this, the first article of a three-part series, we introduce Schrödinger's equation and put it in its historical context.
Meet the mother theoryThe holy grail for 21st century physics is to produce a unified theory of everything that can describe the world at every level, from the tiniest particles to the largest galaxies. Currently the strongest contender for such a theory is something called M-theory. So what is this supposed mother of all theories all about?
Bang, crunch, freeze and the multiverseSome of the things I overheard at Stephen Hawking's 70th birthday conference did make me wonder whether I hadn't got the wrong building and stumbled in on a sci-fi convention. "The state of the multiverse". "The Universe is simple but strange". "The future for intelligent life is potentially infinite". And — excuse me — "the Big Bang was just the decay of our parent vacuum"?!
Free, from top to bottom?A traditional view of science holds that every system — including ourselves — is no more than the sum of its parts. To understand it, all you have to do is take it apart and see what's happening to the smallest constituents. But the mathematician and cosmologist George Ellis disagrees. He believes that complexity can arise from simple components and physical effects can have non-physical causes, opening a door for our free will to make a difference in a physical world.
Freedom and physicsMost of us think that we have the capacity to act freely. Our sense of morality, our legal system, our whole culture is based on the idea that there is such a thing as free will. It's embarrassing then that classical physics seems to tell a different story. And what does quantum theory have to say about free will?
Maths behind the rainbowKeats complained that a mathematical explanation of rainbows robs them of their magic, conquering "all mysteries by rule and line". But rainbow geometry is just as elegant as the rainbows themselves.
Join the celebration of mind!It's 21st of October and for puzzle lovers this can only mean one thing: the G4G Celebration of mind. This annual party celebrates the legacy of Martin Gardner, magician, writer and father of recreational maths, with mathemagical events in his honour happening all over the world.
Exploding stars clinch Nobel PrizeThis year's Nobel Prize in Physics was awarded for a discovery that proved Einstein wrong and right at the same time.
What is time?Everyone knows what time is. We can practically feel it ticking away, marching on in the same direction with horrifying regularity. Time has enslaved the Western world and become our most precious commodity. Turn it over to the physicists however, and it begins to morph, twist and even crumble away. So what is time exactly?
Convex is complexConvex or concave? It's a question we usually answer just by looking at something. It's convex if it bulges outwards, and concave if it bulges inwards. But when it comes to mathematical functions, things aren't that simple. A team of computer scientists from the Massachusetts Institute of Technology have recently shown that deciding whether a mathematical function is convex can be very hard indeed.