fundamental forces

A new particle that has recently been discovered at CERN confirms predictions made by theoretical physicists over six years ago.

What are the mysteries that still remain in particle physics?

It's amazing to think that our world is based on a handful of fundamental particles and forces. Find out how it all fits together.

By the 1970s physicists had successfully tamed three of the fundamental forces using a sophisticated construct called quantum field theory. The trouble was that the framework seemed to fall apart when you looked at very high or very low energy scales. So how could these be thought of as valid theories? It's a question physicists are still grappling with today.

The early 1950s were an experimental gold mine for physicists, with new particles produced in accelerators almost every week. Yet the strong nuclear force that acted between them defied theoretical description, sending physicists on a long and arduous journey that culminated in several Nobel prizes and the exotic concept of "asymptotic freedom".

In the first part of this article we explored Landau's theory of phase transitions in materials such as magnets. We now go on to see how this theory formed the basis of the Higgs mechanism, which postulates the existence of the mysterious Higgs boson and explains how the particles that make up our Universe came to have mass.

It's official: the notorious Higgs boson has been discovered at the Large Hadron Collider at CERN. The Higgs is a subatomic particle whose existence was predicted by theoretical physics. Also termed the god particle, the Higgs boson is said to have given other particles their mass. But how did it do that? In this two-part article we explore the so-called Higgs mechanism, starting with the humble bar magnet and ending with a dramatic transformation of the early Universe.
The 2008 Nobel Prize in Physics has been awarded.
  • Want facts and want them fast? Our Maths in a minute series explores key mathematical concepts in just a few words.

  • What do chocolate and mayonnaise have in common? It's maths! Find out how in this podcast featuring engineer Valerie Pinfield.

  • Is it possible to write unique music with the limited quantity of notes and chords available? We ask musician Oli Freke!

  • How can maths help to understand the Southern Ocean, a vital component of the Earth's climate system?

  • Was the mathematical modelling projecting the course of the pandemic too pessimistic, or were the projections justified? Matt Keeling tells our colleagues from SBIDER about the COVID models that fed into public policy.

  • PhD student Daniel Kreuter tells us about his work on the BloodCounts! project, which uses maths to make optimal use of the billions of blood tests performed every year around the globe.