## Articles

In the previous article we explored how a clever argument involving gambling makes the idea that there are parallel universes more credible. But does it really?

Hugh Everett III is the father of the many-worlds interpretation of quantum mechanics. He published the idea in his PhD thesis but died before it gained the recognition it deserves. This article gives an insight into Everett's difficult life.

Mathematicians and psychologists don't cross paths that often and when they do you wouldn't expect it to involve an (apparently) unassuming puzzle like the Tower of Hanoi. Yet, the puzzle holds fascination in both fields.

Ocean waves are not moving walls of water. Instead, it's some kind of energy that moves along. But then, what happens to the water itself? This isn't just an idle question to ponder while watching the ocean — its answer may help protect us from it too. And it requires some sophisticated maths.

Space is three-dimensional... or is it? In fact, we are all used to living in a curved, multidimensional universe. And a mathematical argument might just explain how those higher dimensions are hidden from view.

String theory has one very unique consequence that no other theory of physics before has had: it predicts the number of dimensions of space-time. But where are these other dimensions hiding and will we ever observe them?

Andy Murray and Laura Robson made a good team at London 2012, bringing home silver in the mixed doubles. But how do you make sure that the competing pair is the best you can pick from the team?

In the first article of this series we introduced Schrödinger's equation and in the second we saw it in action using a simple example. But how should we interpret its solution, the wave function? What does it tell us about the physical world?