Articles

String Theory, Duality and Art: how the Higgs boson and Turner Prize collide

On the face of it, an artist and a theoretical physicist might seem an unlikely pairing. But Turner Prize-winning sculptor Grenville Davey and string theorist David Berman's collaboration is producing beautiful, thought-provoking work inspired by the fundamental structure of the Universe. Julia Hawkins interviewed them to find out more about how the Higgs boson and T-duality are giving rise to art.

Taming water waves

Few things in nature are as dramatic, and potentially dangerous, as ocean waves. The impact they have on our daily lives extends from shipping to the role they play in driving the global climate. From a theoretical viewpoint water waves pose rich challenges: solutions to the equations that describe fluid motion are elusive, and whether they even exist in the most general case is one of the hardest unanswered questions in mathematics.

Renewable energy and telecommunications

When the mathematician AK Erlang first used probability theory to model telephone networks in the early twentieth century he could hardly have imagined that the science he founded would one day help solve a most pressing global
problem: how to wean ourselves off fossil fuels and switch to renewable energy sources.

From neurobiology to online gaming

Artificial neural networks grew out of researchers' attempts to mimick the human brain. In 1997 the Isaac Newton Institute hosted a landmark research programme in the area. Today, neural networks are able to learn how to perform complex tasks and are crucial in many areas of life, from medicine to the Xbox.

Taming infinity

Quantum mechanics and general relativity are incompatible — and this has led to a decades-long search for a theory of quantum gravity that could combine the two. But the particle physicist Richard Woodard thinks that the mismatch between the two could be nothing more than an illusion, created by the complicated maths techniques used in attempts to unite them.

Does infinity exist?

John Barrow gives us an overview, from Aristotle's ideas to Cantor's never-ending tower of mathematical infinities, and from shock waves to black holes.