DNA

We explore some problems physics as we know it has trouble dealing with and a new theory that may provide answers.

Is nature using digital tools to deal with genetic information?

You could help researchers understand the genetics, and potential links, between mathematical talent and autism.

Books, brains, computers — information comes in many guises. But what exactly is information?

Scientists find a new method of storing information in DNA.

Yesterday's refusal by the UK government to posthumously pardon Alan Turing makes sad news for maths, computer science and the fight against discrimination. But even if symbolic gestures are, symbolically, being rebuffed, at least Turing's most important legacy — the scientific one — is going stronger than ever. An example is this week's announcement that scientists have devised a biological computer, based on an idea first described by Turing in the 1930s.

"It's a match!" cries the CSI. At first glance it might seem that if the police have matched a suspect's DNA to evidence from the crime scene, then the case is closed. But some statistical thinking is required to understand exactly what a match is, and importantly, how juries should assess this as part of the evidence in a trial.

The human genome is represented by a sequence of 3 billion As, Cs, Gs, and Ts. With such large numbers, sequencing the entire genome of a complex organism isn't just a challenge in biochemistry. It's a logistical nightmare, which can only be solved with clever algorithms.